水世界-水处理技术社区(论坛)

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信登录

扫一扫,用微信登录

搜索
楼主: huangyustar
打印 上一主题 下一主题

GIS论文资料合集

[复制链接]

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
81
 楼主| 发表于 2006-12-19 16:22:10 | 只看该作者

应用国产GIS平台开发实用的配电网地理信息管理系统




北京城区供电局 北京市西城区西直门南小街174号(100034) 1、面向应用需求开发配网GIS系统 随着我国城市电网建设的发展,电力用户对提高供电可靠性、电能质量、工作效率和优质服务等方面都提出了较高的要求。而北京城区供电局担负着首都中心地区(包括东城、西城、崇文和宣武)的供电任务,迫切需要采用现代化配网管理工具来提高工作质量、工作效率和服务水平。因此,建设配网GIS系统,既是供电企业为满足市场经济和国家建设的需要,也是现代化电网建设的必然要求。 从本质上看,配网GIS是一种直接融入现代电力生产经营活动之中的、全新的生产经营信息管理工具,同时它应是未来的“数字电网管理系统”中的重要组成部分;从应用角度看,它的具体实现方式无论是底层软件平台结构还是高级实用功能,都因不同国情下电网生产运行模式以及经营管理方式的不同而产生较大的差别,具有强烈的“本地化”色彩。 因此,我们所面临的严峻问题,是如何将最终用户的复杂需求提炼为GIS系统能够识别的“语言”,进而转化为系统中的一部分。这样做的结果必然会发现,有些功能需求是目前国际上现成的商品化GIS软件难以支持的,由此就引发了系统平台的一次“革新”,有时甚至是一场“革命”;否则,用户的合理需求得不到满足,开发工作就无法继续开展。因此,最理想的配网GIS软件,应能最大限度地满足实际生产的需求,从底层平台到上层应用都应采取面向应用需求的发展策略。 事实上,目前国际上GIS技术市场的发展趋势,也已经完全走出“技术推动应用”发展的昨天,而进入了“应用牵引技术”进步的崭新时代。我们所采用的深圳雅都图形软件公司的国产GIS软件平台由于国内厂商拥有自主版权的底层技术,可以平台软件的内核调整等手段,来满足我们的特殊应用需求,从而使开发出的配网GIS系统具有较高的性能和效率;另一方面,基层电力部门的实际需求,又反过来促进着国产GIS软件平台的技术创新和技术进步,在我国GIS软件技术领域,建立起了现代IT技术发展必不可少的,市场需求与支撑技术的“互动促进”机制,这对于我国发展自主知识产权的IT技术来说是极为重要的。 2、“北京城区配电网地理信息管理系统”简介 2.1 系统建设概况 北京城区供电局从1994年开始作了大量充分的准备工作,经历了可行性调研、需求分析、总体设计和系统开发平台的选型调研,其中包括:ARC/INFO、GENAMAP、MAPVIEW、SICAD、FRAME、SYSTEM 9、MAPINFO以及深圳雅都公司的GROW等等,经过认真地比较,我们感到大部分软件都具有一定的特点,于是我们提出了按照我们的需求,以开发一个成功的DEMO作为取舍条件,雅都公司以它率先完成的拥有自主版权、并具有国内电力特色的图形信息系统EFGIS,赢得了与我局进行合作开发的机会。 我局整个系统的建设是分期分阶段进行的: ⑴第一期(1996年10月~12月)为预研期:为考察其系统软件的实用性和可发展性,检查其应用软件是否能满足我局“营配合一”体制下的生产、运行和管理等工作的要求,我们在前期总体设计思想的基础上,采取“先小范围试点,再全面铺开”的工作方法,对阜成门地区4.8平方公里范围实验区的配电网络做出单机版的演示系统,信息内容包括:从变电站→电缆→开闭站→配电室或从变电站→电缆→10kV线路→柱上变台→低压线路→用户电度表。 ⑵第二期(1997年5月~12月)建设完成了Client-Server结构的、具有18个站点的网络版系统(包括3个广域网站点),完成了城区局所辖90平方公里范围(包括149 幅1:2000地形图)的全部10kV、部分380V配网数据以及用户数据的采集和录入,建立了配网管理模型,并在此基础上开发了一些配网管理的实用功能。 ⑶实际运行阶段:从1998年1月开始,系统投入实用化试运行,将各终端逐步下放到相关生产单位,一方面对系统中的数据进行滚动维护;另一方面对系统的功能和性能进行全面测试,摸索系统运行经验,不断完善系统。为保证系统长期有效地稳定运行和全面推向实用化奠定基础,我们还特别制定了“岗位职责和管理制度”。从1999年5月城区局搬到新址开始,系统每天24小时不停机,运行稳定,从未发生事故。 ⑷第三期:为扩大基础数据的管理和应用范围,进一步开发和完善配网管理系统的全面功能,我们目前正在加紧进行系统第三期工程的开发建设。 经过不断开发,我局的配网GIS已经发展成今天有别于传统GIS技术的AM/FM/GIS系统。简单概括下来,配网GIS系统需要地形信息,但又不依赖地形信息,只是将其用于图形数据录入及其他需要以地形坐标作为参照的应用,而更多的是对于电网拓扑结构的建立、查询和分析;而且,开发配网GIS并不是最终目的,我们的目标是建设一套完整的配网信息管理系统,该系统以“配网信息管理”为核心,灵活地运用各种相关技术,其中包括AM/FM/GIS技术、配网管理技术、数据库技术、通信和网络技术以及互联网技术等等,将他们有机地结合起来。 2.2 已实现的主要关键技术 支持分布式协同工作环境及图元级锁定功能; 支持对电网拓扑结构的描述、分析和处理; 支持地理空间、逻辑空间和属性空间信息的多向交叉查询; 由地理空间的电气图自动生成各种专题图(包括线路资产图和各种逻辑图); 故障点的判断及其图形化模拟分析; 网架重构及其图形化的步骤模拟分析; 报装方案的辅助生成; 支持对设备生命周期的描述及相互转换; 支持以浏览器/服务器方式对地理空间、逻辑空间和属性空间信息的相互查询。 2.3系统在管理和生产上发挥的作用 该系统的应用使得我局的工作质量和效率得到极大的提高,已经从量的变化导致质的飞跃,其实用性、高效率和易操作性深受使用者的普遍欢迎,主要表现在以下几方面: 高效便捷的图形和数据的录入及编辑修改工具 该功能不仅为各生产部门提供了方便易用的设施资料维护工具,同时还在“分布式协同工作环境”支持下,彻底解决了各部门之间图形与数据资料的“分散加工”与“整体共享”的矛盾,从而保证了资料的准确性、一致性和及时性,极大地提高了生产效率和管理水平。 正反向电源查询、故障快速定位 该功能是调度部门、紧急修理班和报修中心等单位在线路出现计划停电和故障停电的情况下,显示停电影响范围、查询并判断可能发生问题的故障设备、按不同条件进行事故定位的便捷工具。它使供电抢修人员在线路发生故障时快速地做出反应,及时进行抢修并恢复供电,大大缩短停电时间、提高供电可靠性。 故障推图、多路转供电方案的自动生成 该功能不仅可以根据线路故障所在点自动推出以故障分段为显示中心的网络图,而且还自动提供若干故障隔离和转供电方案,是配网调度人员实用的辅助决策工具。 基于配网图形进行10kV线损理论计算 该功能以“均方根电流法”为依据,可以随时根据给定的24点电流值、供电量以及线路结构,自动计算出线损理论计算结果和线损图,并自动生成各种线损统计分析报表,为配网规划和改造方案的制定提供了快速、可靠的依据,该功能的投运,使过去几个月的统计工作量变成自动完成,极大地提高了工作效率。 基于配网图形进行可靠性基础数据的自动生成 该功能严格按照国家电力可靠性管理中心对可靠性的分段要求,自动对线路分段开关进行编码,并对各分段进行相应的设备数据统计,且生成可靠性图,最终生成可靠性统计报表,该功能的采用,使繁琐的可靠性基础数据统计工作变成随时自动完成,使可靠性统计工作变得简单、及时和准确。 配网SCADA数据与系统的连接 该功能实现了与配网SCADA监控系统实时数据的连接,即使配网设施的静态资料与动态数据有机结合于“全信息电网模型”之中,利用系统的图形功能,可以直观地查看开关的开合状态、事故报警和设备的负荷变化情况,使得配网从以往的静态管理转变成动态管理,使设备的运行维护从被动变为主动。目前已实现将天安门会场区配电室和柱上变台综合测控仪的实时信息接入本系统,使得有关人员通过GIS终端就可监视设备运行状况。特别是天安门会场区实时信息的接入已正式应用于五十周年国庆、澳门回归和世纪之交等重要政治活动的值班工作,效果良好! 业扩报装方案的辅助生成 可根据用户报装的容量和位置以及线路负荷情况,确定合理的供电路径,经人工干预后绘出标准的“供电方案”,极大地提高了制定报装方案的效率和科学性。 线路变更的批量数据自动更新 如何使已经存入系统中的大量配网数据,根据配网改造和分倒路工程所引起的配网结构变化自动随配网结构的改变而发生变化,这是系统数据能否滚动维护进而导致系统能否生存的关键问题,该功能的实现使得电源改变所导致的相关设备属性的变化在很短的时间内就完成了,同时系统的有关图形信息也随之自动发生变化,从根本上提高了电源管理工作的准确性和及时性。 图纸的维护与输出 该系统中需要进行维护的仅仅是带有地形背景的线路图和站内主接线图,其他日常工作中常用的、各种专题图如棵棵图(线路资产图)、电源图、线损图、可靠性图和网络图等,都是由线路图和接线图根据一定规则自动生成的,因此,可以说我们是“一次性”地维护图形,这样既保证了数据的唯一性和准确性,又极大地提高了工作质量和效率,从而也调动了使用人员的积极性。 该系统被评为1998年北京供电公司和华北电力集团公司科技成果一等奖;其第三期工程经国家科技部3S专家组和国家电力公司领导的评审,被列为国家科技部首批GIS应用示范工程。 北京供电局领导自始至终对于该项工作在政策、资金和规划等方面都给予了强有力的支持,并已决定将城区配网GIS的应用成果在城近郊五个分局进行推广。 3、我局配网GIS实用化开发体会 ⑴ 领导重视 由于配网GIS系统的开发建设涉及了供电企业所有生产单位,这样庞大的系统工程在建设的自始至终一定要得到企业领导的全力支持,否则系统即使开发出来,也不会得到很好地应用,更不用说数据的滚动维护了。 ⑵ 成立专门的开发机构完成用户需求分析和总体设计 应确立专职的开发部门与专责人,这些人员应熟悉电力业务和具有计算机系统开发的经验,并应具备系统总体设计的经验。 与其他计算机应用系统的开发不同,配网GIS的开发,它所面临的用户大多是生产一线的工人,他们的计算机应用水平不高,有些甚至还未曾使用过计算机,更不用说去理解GIS的概念了。他们所提出需求往往很难让开发人员接受,如何引导他们提出需求,并将其提炼和升华为系统能够实现的、描述准确的、具备典型意义的配网管理功能,是开发人员进行需求分析时应做的工作;并且应合理安排各应用子系统开发的顺序。 ⑶选择合适的开发平台和开发伙伴 因为配网GIS具有较强的“专业化”和“本地化”色彩,能否实现系统开发的目标,开发平台的选择是技术基础;而且,系统定制开发的工作量较大,开发伙伴的经验和能力以及生命力是极其重要的。加之配网GIS项目的资金投入相对较大,因此,一定要慎重选择。 ⑷确立合理的系统开发目标,以点带面,逐步扩大应用范围 开发目标要定位合理,要充分考虑现有的人员、资金、技术等情况,进行可行性调查研究和分析,不要追求大而全,更不可盲目照搬其他单位的模式。 在不具备开发实践经验的前提下,应采取从实验区做起,摸索经验后,再逐步扩大范围,以避免浪费投资。 ⑸尽量缩短开发时间,使系统早日见效 为使系统首次采集的数据不会因间隔时间太长,而导致因配网发生变化数据失效,应抓紧时间,集中人力,快速将配网设备数据录入,并进行系统的功能测试,使系统尽快投入运行,早日见到效益。 ⑹ 从数据源抓起,严把数据关 为了保证系统能正常运行,数据准确是关键,一定要做到源头数据采集、源头数据录入、源头滚动维护,建立健全数据滚动维护机制。 ⑺ 逐级进行新功能测试 由于采用“立竿见影,滚动发展”的策略,系统的应用功能将随实用化工作的深入展开,而逐步增加,当新功能加入系统的时候,应严格坚持分级全方位的测试流程。 即:由开发公司的测试人员从软件结构角度对新功能进行产品测试;作为使用单位,应进一步从开发专责人开始,组织严格的初步应用测试,初步测试通过后,可投入试运行;最后,再由此项功能实际使用部门的应用专责人进行详细测试,通过后该功能方可正式投入运行,以确保避免对现有运行系统造成意外破坏。 ⑻ 锻炼和培养一批应用人才 系统建立之初,需要在较短的时间内,完成大量的数据录入工作,这时应尽可能采用各使用单位的人员来承担该项工作,借此机会,可一次到位培训应用单位的人才,他们就是今后新的功能需求提出和数据维护的主力军。 ⑼挑战旧的工作方式,迎来新技术的革命 配网GIS的开发和应用,实际也是一场对现有工作方式的挑战,让管理人员和生产人员都认识到系统所带来的好处,逐步改变现有习惯的工作方式,愉快地接受全新的工作方式,可能要经历一个“痛苦”的过程,需要大家共同努力。 ⑽探索新的开发模式,提高开发效率 利用先进的技术手段,缩短开发和使用单位的距离,尽可能减少开发时间,提高开发效率,这就要求开发专责部门起好桥梁作用;除此之外,还应做好系统运行的管理工作,保障系统的安全稳定。   综上所述,配网GIS的开发工作不但需要好的底层平台,更重要的是由于它所具有的本地化和专业化的特点,要求我们一定要面向需求进行开发,以应用来牵引技术的发展,以此来推动我国GIS技术的不断创新,设计出符合中国人自己特点的配网GIS应用产品。 [ 本帖最后由 huangyustar 于 2006-12-19 16:23 编辑 ]
清啦

1万

积分

1万

金钱

8102

帖子

铂金水师

QQ
82
发表于 2006-12-19 18:22:31 | 只看该作者
挺神.挺多.
相互学习,共同进步!

水世界--环保项目与施工
http://www.chinacitywater.org/bbs/forumdisplay.php?fid=63
blog:http://blog.163.com/

157

积分

126

金钱

32

帖子

初级水师

83
发表于 2006-12-20 00:37:29 | 只看该作者
很少接触这类相关行业的内容,不过应该会是一个很有前景的行业。

2497

积分

1064

金钱

239

帖子

白银水师

84
发表于 2006-12-20 10:11:57 | 只看该作者
原帖由 水煮三国 于 2006-12-20 00:37 发表 很少接触这类相关行业的内容,不过应该会是一个很有前景的行业。

247

积分

648

金钱

134

帖子

初级水师

85
发表于 2006-12-20 15:48:21 | 只看该作者

运用卫星遥感GIS&GP的灌溉工程性能评估




Abstract India is amongst the largest irrigator countries in the world today. There is, however, increasing concern about some of the irrigation potential created not brought into the functional system, low operating efficiency, less crop productivity etc. System performance monitoring, evaluation and diagnostic analysis are keys to appreciate the improvement or inefficiency in our irrigation projects. Irrigated lands?baseline inventory in spatial and time domains using spatial information technologies (satellite remote sensing, digital image processing, GIS and GPS) provides an array of performance evaluation matrices to address this issue. Case study in Nagarjunasagar irrigation project in Andhra Pradesh, India is cited as a realization of this modern information technology tool. Introduction A large number of irrigation projects have been commissioned in India in the post-independence era for improving food production and economic development. These irrigated croplands, though limited to about 30 percent of the gross cropped area in India, contribute more than 50 percent of the total agricultural production. This means, scientific management of irrigation water and irrigated croplands is the only way to make our agriculture productive and competitive. It is realized, however, that the irrigation potential created is not being fully utilized and gap exists between the potential created and potential utilized. The centrally sponsored Command Area Development (CAD) programme was initiated in 1974-75 with the objective of bridging the gap between the creation and utilisation of irrigation potential and for optimising production and productivity from irrigated lands on sustainable basis. The programme mainly involves on-farm developmental works like construction of field channels and field drains, land lavelling and shaping and introduction of conjunctive use of canal and tubewell irrigation. CAD programme is in operation in the country for more than two decades. During the 8th Five Year Plan Period, performance evaluation studies of irrigation projects were taken up. One of the major constraints of such evaluation studies is the absence of baseline inventory of irrigation projects on spatial scale with the Command Area Development Authority (CADA). The lacunae was felt most when the Ministry of Water Resources (MoWR), Govt. of India launched the National Water Management Project (NWMP) with the World Bank抯 assistance in early nineties in some of the irrigation projects. Since then, MoWR is pursuing evaluation studies with several alternatives including application of satellite remote sensing. An opportunity came in early 1998, when MoWR and National Remote Sensing Agency (NRSA) signed agreement to take up satellite remote sensing based evaluation study of 14 major irrigation projects as a bench mark exercise to be completed in 2 years time frame. These irrigation projects are : Sriramsagar and Nagarjunasagar (Andhra Pradesh), Jamuna and Sukla (Assam), Krishna, Jeyakwadi, Girna, Upper Tapi, Bhima and Purna (Maharashtra), Chambal (Rajasthan), DVC, Kangsabati and Mayurakshi (West Bengal) covering 3.3 million hectare culturable command area (CCA). This paper deals with Nagarjunasagar left bank canal irrigation command as one of the above-mentioned bench mark studies to realize application of spatial information technologies. Nagarjunasagar Left Bank Irrigation Command in Andhra Pradesh, India Performance Evaluation Matrix using Spatial Information Technologies. Performance Evaluation Matrix Basic objective of a irrigation project is to improve the productivity of the land for agricultural produce with scientific application of water and other management inputs. Performance can therefore be judged, if we have answers to the following questions: Is the irrigation potential utilized vis-?vis the potential created? Is the return on agricultural production and productivity achieved towards design crop yield (maximisation)? Is irrigation water being efficiently applied (managed)? Is there an improvement or deterioration in the irrigated lands development (due to salinity / alkalinity, waterlogging)? To address these questions, ime domain?and patial domain?play important role. Time domain: Time span of performance evaluation can be (i) since commissioning of the irrigation project, and or (ii) in subsequent time periods. Spatial domain: A canal irrigation project in India constitutes a heirarchial system of main canal, branch canals, distributaries, minors and field channels. Each has its irrigation command. A canal irrigation project in India is also divided and sub-divided into several administrative jurisdictions like Irrigation Zones / Divisions / Sub-divisions / Blocks. Each canal can be divided into ead reach?and ail reach? Evaluation has to be structured into relative performance within the time domains and spatial domains of an irrigation project or amongst several irrigation projects. How Spatial Information Technologies help in Performance Evaluation of an Irrigation Project? We have in mind 4 contemporary technologies, namely, (i) satellite remote sensing (SRS), (ii) digital image processing (DIP), (iii) geographic information system (GIS), (iv) global positioning system (GPS) to apply to address this issue. Satellite Remote Sensing Crop classification using multi-spectral data of IRS LISS is now well-established operational tool in India. Based on the crop calendar, optimal satellite datasets covering the entire crop season (say, for rabi crop season, one data set each month during November to March) are selected. Before classification of an image, few pre-processing steps, like geometric rectification of satellite data using ground control points (GCPs) and normalisataion of multi-sensor image data are followed. Digital Image Processing Geometrically rectified multi-date satellite data is sequentially analysed with maximum likelihood classifier algorithm (in the present study, using Erdas Imagine ver. 8.3.1 in Silicon Graphics workstation platform) supported with ground-truth (training sets) collected during field visit. Various crops are identified and extracted sequentially at different stages of the classification process from the multi-date satellite data during the crop growth stage period. Classification accuracy with respect to training sets and total thematic map is ensured by close examination of error matrix (confusion matrix). Multi-date satellite data are also transformed to NDVI (Normalised Different Vegetation Index) values using the mathematical function of ratio of difference between reflected radiation in infrared and red band values by sum total of these two band values. NDVI represents the integral effect of various factors that influence crop production and is well accepted in India and elsewhere for crop yield forecast and agricultural drought monitoring. GIS Application Usually, maps available with Command Area Development Authority (CADA) are of various formats and themes consisting of canal network, irrigation command boundary / administrative jurisdiction, place names, besides rivers / streams, reservoir / tanks, settlements, transportation networks, etc. A digital database is created of this information, which is co-registered with multi-date satellite data. When the crop classification maps and crop condition (NDVI) maps are available from satellite derived data, extraction of information within various spatial domains of the irrigation command can be done by overlaying digital database. GIS modules in Erdas software are used for these purposes. GPS Application Satellited based GPS provides accurate geo-referenced (in terms of latitude & longitude) positional location on the ground. Stand-alone mode GPS instrument is used to determine the geo-reference position of CCE (Crop Cutting Experiment) plots in the crop fields, maintained by CADA for crop yield estimation. These CCE plots (usually 5 metre x 5 metre in size) are then identified onto the satellite image to extract NDVI values of the CCE plots. A regression model between NDVI and crop yield for the sample CCE plots is developed which is then extrapolated to the spatial domain(s) of the irrigation command for estimation of crop production. Case Study: Nagarjunasagar Irrigation Command Nagarjuna Sagar Left Canal (NSLC) command is designed for irrigation of 0.42 million hectare CCA in 3 districts in Andhra Pradesh State. The spatial domain of NSLC consists of (i) 3 irrigation zones which is further sub-divided into 32 irrigation blocks (iii) located in 3 districts and (iv) is supported by 114 canal distributaries. Two time domains and one crop season, namely, rabi crop season (November-March) of 1990-1991 and 1998-1999 are selected to identify progressive performance in NSLC command. The methodology to use SRS, DIP, GIS and GPS to transform primary data (satellite image / CADA maps & office data) to secondary information (performance matrix) is followed, as mentioned earlier. All spatial (maps) and attribute (crop types, crop area, cropping intensity, and crop yield) information are generated with reference to 2 time domains and 4 spatial domains. In the following statements, the portion 憉nderline?indicates the performance Lmatrix in the NSLC irrigation command as a whole. Performance matrix with respect to disaggregated spatial units are cited in Ref.3. Crop classification from IRS 1A LISS II and IRS ?1C/1D LISS III data consists of paddy, cotton, pulses, tobacco, surgarcane, chillies and orchard crops. These crops are grouped into irrigated wet?and irrigated dry? as operationally followed in this command. Inconsistency in cropping pattern during the two time domains is observed (Figure 1). Irrigation service being extensive in 1998-1999 compared to 1990-1991, irrigation potential utilized is higher by 55,000 hectare and cropping intensity has increased from 71% to 84% (Figure 2). * Paper presented in : 5th Annual International Conference, ap India 2002? organised by CSDMS at New Delhi, 6-8 February 2002. A crop yield model for the major crop (paddy) has been developed by correlating satellite data based time composited NDVI values at CCE plot locations with the estimated yield in the CCE plots (Figure 3). The model provides crop yield in tonnes / hectare, which is an important performance indicator across space and time domains. The model is validated and is found to predict well at the larger disaggregated units. In the process of crop yield model development, satellite based GPS technique is used to determine the geo-referenced locational information of CCE plots in the satellite image. Although, irrigation service was extensive in 1998-99, paddy crop productivity (Figure 4) was found to be lower (4.00 tonne / hectare) compared to 1990-91 (4.55 tonne / hectare). However, these yield estimates are much above the national average from the irrigated croplands. Water release into the canals is utilized to calculate Water Utilisation Index (WUI). During 1990-91, area irrigated was much less for per unit of canal irrigation water supplied (65 hectare irrigated / million cu.m water supplied), compared to 1998-99, when better utilization of canal irrigation water was achieved (92 hectare irrigated / million cu.m water supplied) {Figure 5}. All the performance parameters, therefore, indicate general improvement in system performance of NSLC project. Acknowledgement Ministry of Water Resource (MoWR), Govt. of India commissioned the satellite remote sensing based evaluation study of 14 major irrigation projects. NRSA acknowledges with great appreciation about this progressive step taken by the MoWR. Project team (authors of this paper) in NRSA places on record their sincere thanks to the Administrator and engineers of the Nagarjunasagar canal command project for access to their data and to Dr.R.R. Navalgund, Director, NRSA and S.K. Bhan, Deputy Director (Applications), NRSA for encouragement to present this paper in India 2002?Conference. Reference Chakraborti, A.K. 1999. valuation of Water Management in Irrigated Croplands?Proc. IT IS, Aurangabad. Rao, V.V., Chakraborti, A.K. 2000. ater Balance Study and Conjuctive Water Use Planning in an Irrigation Canal Command : A Remote Sensing Perspective? International Journal of Remote Sensing, Vol.21, No.17, P.3227-3238. Water Resources Group, NRSA. atellite Remote Sensing based Evaluation Study of Nagarjunasagar Left Canal Irrigation Command in Andhra Pradesh? Project Report, Feb.2001, 168 P. [ 本帖最后由 snake1233 于 2006-12-20 15:50 编辑 ]

7260

积分

991

金钱

3319

帖子

黄金水师

86
发表于 2006-12-20 15:52:14 | 只看该作者
真正步入IT时代了

247

积分

648

金钱

134

帖子

初级水师

87
发表于 2006-12-20 16:35:53 | 只看该作者

用遥感和GIS技术管理印度马纳尔湾的珊瑚礁

Abstract The coral reefs characterise an ecosystem of high biological diversity, having the greatest number of species of any marine ecosystem. Livelihood of many millions of people is dependent on this unique ecosystem as a considerable proportion of their food and earning is from the productivity of coral reef. Coral reefs are considered as one of the most important critical resources for various ecological, environmental and socio-economic reasons. Coral reefs act as a barrier against wave action along coastal areas thus preventing coastal erosion. In addition, coral reefs protect mangroves and seagrass beds in certain areas, which are the breeding and nursing grounds of various economically important fauna. Coral reefs are also important breeding, spawing, nesting, and feeding areas for many economically important varieties of fishes and other marine organisms. As a result of the increasing human population along the coastal area, anthropogenic impacts on the coastal zone have become severe over the past few decades. Coral ecosystem also face many threats, of which some are of natural origin like storms and waves particularly tropical storms and cyclones that cause major intermittent damage to reefs. The majority of damage to coral reefs around the world has been through direct anthropogenic stress. In Gulf of Mannar, the coral reefs have been used as a source of calcium carbonate and building blocks. In general, coral reefs in Gulf of Mannar can be categorised as 揹egrading? and hence, monitoring and management of these valuable marine resources are of prime importance. In this contest Survey of India Topographic Sheet (1969), Naval Hydrographic Chart (1975) IRS LISS-II (1988), IRS LISS-III (1998) satellite data and ARC-INFO and ARC-VIEW GIS software were used for coastal geomorphology, seafloor, shoreline, coastal land use/land cover and coral reef mapping from Gulf of Mannar. The current status of coral reef, changes and important coastal problems (coastal geomorphological and land use/land cover changes) for coral reef degradation of Gulf of Mannar are identified. 1. Introduction Coral reef system as also the ecosystem of the tropical rain forest, are the most matured marine ecosystems of our planet. They play an important role in global biochemical processes and in the reproduction of food resources in the tropical regions. Coral reefs act as a barrier against wave action along coastal areas thus preventing coastal erosion. In addition, coral reefs protect mangroves and seagrass beds in certain areas, which are the breeding and nursing grounds of various economically important fauna. Coral reefs are also important breeding, spawing, nesting, and feeding areas for many economically important varieties of fishes and other marine organisms. The people living along the coast obtain a considerable proportion of their food and earnings from the productivity of coral reefs. Coral reef ecosystems are very sensitive to external impacts both natural and manmade, which violate their homeostasis (Sorokin 1992). The majority of damage to coral reefs around the world has been through direct anthropogenic stress (Grigg and Dollar 1990). According to Bryant et.al (1998), 57% of the world抯 coral reefs are potentially threated by human activity such as coastal development, destructive fishing, over exploitation, marine pollution, runoff from deforestation and toxic discharge from industrial and agricultural chemicals. As global pressures on coral reefs and related ecosystems grow with developing economies and increasing coastal populations, the need for careful monitoring , planning and management become essential (Knight et.al 1997). Gulf of Mannar, extends from Tuticorin to Rameswaram Island in the SW-NE direction, lies between 78?5?& 79?0?E longitudes and 8?7?& 9?5?N latitudes, to a length of about 140 km. There are 21low islands (Figure 1) situated at an average distance of about 8km from the coast and running almost parallel to the coastline. These islands are broadly grouped into Tuticforin, Vembar, Keelakkarai and Mandapam groups. These areas are endowed with a combination of ecosystems including mangroves, seagrass, seaweeds and corals reefs. Different types of reef formations have also been observed along the periphery of the islands viz. fringing reef, patch reef and coral pinnacles. Figure 1 Location map of the study area (Gulf of Mannar) In South India the coral reefs have been used as a source of calcium carbonate, building blocks and rubble for construction of roads (Mahadevan and Nayar 1972). Blasting and dredging activities result in high sedimentation on the coral reef of Gulf of Mannar there by leading to its degradation. The coral reefs of Tuticorin group of Islands in Gulf of Mannar have been damaged due to the discharge of effluents from petrochemical and other industries along the coast, and fly ash discharges from thermal plants (Ramanujam and Mukesh 1998). In general, coral reefs in Gulf of Mannar can be categorised as 揹egrading? and hence, monitoring and management of these valuable marine resources are of prime importance. To study coral reefs area effectively and to monitor changes over timw, accurate, rapid and cost-effective mapping techniques are required. Satellite remote sensing is widely used as a tool in many parts of the world for the management of resources and activities within the continental shelf containing reefs. Preliminary studies carried out in India by Space Application Center (SAC) Ahmedabad, have proved the importance of remote sensing data in mapping and monitoring of the coral reef (Muley et al. 1986; Nayak et al. 1987). Anjali Bahuguna and Nayak (1998) have mapped the coral reefs of Gulf of Kachchh, Lakshadweep, Palk Bay, Gulf of Mannar and Andaman and Nicobar Islands using IRS and SPOT satellite data. Mumby et al (1998) used digital airborne sensor of Landsat MSS, Landsat TM, SPOT XS, and SPOT PAN and merged Landsat TM/SPOT PAN for mapping the coral reef in Turks and Caicos Islands they also studied coral reefs in situ by visual technique. 2. Objectivs of the Study The objectives of the present study are to Assess the current status of coral reefs in Gulf of Mannar based on remote sensing and GIS approach Assess the changes that have occurred in the spatial distribution of coral reefs during the period 1988-1998 using multidate remote sensing data Study the coastal geomorphology and its influence on the coral reefs Study the influence of landuse/landcover changes on the coral reefs Suggest suitable management measures for sustainable management and preservation of coral reefs in Gulf of Mannar region 3. Materials and Methods Images of IRS LISS-II (April 1988) and IRS LISS-III (May 1998), Survey of India Toposheets (1969) and Naval Hydrographic Charts (NHO) 1975 were been used in this study. To cover the objectives of this study, six types of approaches have been attempted are listed below: Analyse and interpretation of optical remote sensing data (IRS LISS-III data) for coastal geomorphology Analyse and interpretation of optical remote sensing data (IRS LISS-III data) and Survey of India Topographic sheets (1969) for shoreline change mapping. Interpolation of Bathymetry using Naval Hydrographic charts and bathymetry survey Analyse and interpretation of multidate optical remote sensing data (IRS LISS-II and LISS-III data) for coastal land use/land cover change deduction Socio-economic studies Analyse and interpretation of multidate optical remote sensing data (IRS LISS-II and LISS-III data) for coral reef change deduction. Coastal Landform mapping Geocoded IRS1D LISS ?III imagery on 1:50,000 scale were visually interpreted based on image characteristics, and identified and mapped various coastal landform categories along the coast of Gulf of Mannar. In the present study, an image interpretation key indicating tone/colour, size and pattern developed by Space Applications Center, Ahmedabad SAC (1991), has been adopted in this study. The basic information like transport network, tanks, rivers etc are transferred from SOI toposheet. After identification and delineation, an accuracy test was made for 118 sample points on SOI toposheet. The study area map at 1:50, 000 scale was divided into grids and intersecting points of each grid within the study area were taken as sample points for validation of classified satellite data in ground truth checking. Over the ground, out of the 118 sample points, 105 points were found to be correctly interpreted giving an accuracy of about 90 per cent. The georeferenced coastal land form map was digitized, edited labeled and projected using ARC-INFO GIS. Finally a coastal landform map was generated using intercept operation of ARC/VIEW. The area statistics of coastal landforms in the map were generated. Shoreline Change Geocoded IRS LISS III data of May 1998 and SOI topographic sheets of 1969 were used to prepare shoreline maps on 1:50,000 scale. Multi-date shoreline maps of 1969 and1998 were digitized and projected using polygonal using ARC-INFO GIS and were overlaid using tic coordinates of the study area. Overlaid maps were edited and labeled. Finally a temoporal shoreline change map was generated using intercept option of ARC-VIEW and and identified erosion and accretion areas along the coasts of island and offshore islands in Gulf of Mannar wit sufficient ground truth verification. Bathymetry Mapping Bathymetry map of study area on 1: 50,000 scale was prepared manually using 1975 Naval Hydrographic Chart. The prepared bathymetry map was digitized into ARC-INFO and a digital bathymetry map was prepared. The prepared bathymetry map was updated during fieldwork, which was carried out during April 1999. The depth of the sea bottom was measured (within 10m depth) using ecosounder around Mandapam and Tuticorin groups of islands and some coastal regions near Tuticorin and Mandapam coastal area. The depth values are recorded at a particular location with reference to chart datum (1975). The measured depths values were tide corrected with respect to time and then converted with respect chart datum (0.2m accuracy). Measured tide table from the Tuticorin port was used for final data conversion to chart datum. Land use/Land cover Mapping Geocoded multi-date IRS (1A LISS ?II of June 1988 and 1D LISS ?III of May 1998) imageries on 1:50,000 scale were visually interpreted based on image characteristics, and various land use / land cover categories were identified and mapped around Gulf of Mannar. The basic information like transport network, tanks, rivers etc are transferred from Survey of India toposheet. After identification and delineation, an accuracy test was made for 150 sample points on SOI toposheet. The study area map at 1:50, 000 scale was divided into grids and intersecting points of each grid within the study area were taken as sample points for validation of classified satellite data in ground truth checking. Over the ground, out of the 150 sample points, 139 points were found to be correctly interpreted giving an accuracy of about 92 per cent. The georeferenced land use maps of 1988 and 1998 were digitized in ARC/INFO and were overlaid using TIC coordinates of the study area. Digitized maps were edited and labeled. Finally a temporal land use/ land cover change map was generated using intercept operation of ARC/INFO. Socio-Economic Studies The fifth approach is by collection of socioeconomic data. The result of this approach is expected to provide information on (i) various economic activities of coastal communities in Gulf of Mannar and (ii) identification of coral reef degradation due to economic activities. Coral reef Mapping IRS LISS-II and IRS LISS-III imageries on 1:50,000 scale were visually interpreted based on image characteristics, various coral reef were identified and mapped categories in Gulf of Mannar. In the present study, the classification system developed by Space Application Center for the national coral reef mapping project (Anjali Bahuguna and Nayak, 1994) has been adopted. After identification and delineation, an accuracy test was made for sample points on Survey of India Topographic sheets (SOI). The study area map on 1:50,000 scale was divided into grids and intersecting points of each grid within the study area were taken as sample points for validation of classified satellite data in ground truth checking. Over the ground, out of the 112 sample points, 95 points were found to be correctly interpreted giving an accuracy of about 84.82 percent. The geo-referenced coral reef maps were digitized, edited, assigned corresponding labels and projected using ARC-INFO. Finally a coral reef map was generated using intercept statistics of coral reef classes in the map. 4. Result and Discussion Coastal Land form The coastal plain between Dhanuskodi and Tuticorin has various geomorphic units with different types of configurations (Figure 2). The geomorphic units, interpreted from remotely sensed data and checked subsequently through fieldwork, have been categorized into four genetic classes ?marine, fluvio-marine, fluvial, aeolian and biogenic landforms. Figure 2 Coastal geomorphology map of Gulf of Mannar derived from IRS LISS-III satellite data Marine Landforms In the coastal zone varies marine landform features such as beaches, spit, beach ridges, swales and backwater zone, mudflat, offshore islands, coral reefs, wave cut platform, sea cliff, sea cave, water logged land and strand lines have been identified. Beach Beaches are extensively developed along the entire coast of Gulf of Mannar except at some places. The shore between Tuticorin to south Sippikulam ( 2.04 km? , Vaippar River and Gundar River (2.56 km?, Gundar River and Palar River,(2.64 km?, Palar River and Kottakkarai River (2.189 km?,Kottakkarai River and Marakkayarpattanam (2.18 km?southern coastal parts of the Rameswaram Island (2.91 km?and the western part of the Rameswaram Island from Pamban to Peikkarumbu are observed as a important beach areas in Gulf of Mannar coast. All along the shore the beach is observed to be gently sloping and marked with altered crusts and troughs that are formed due to wave action. Spit Among the various depositional landform features encountered, the formation of spit is a significant feature of recent age. South of Tuticorin coastal area two spit formations have been observed. It appears to have been built by the sediments brought by long shore current during southwest monsoon. As the Gulf of Mannar is on the lee of the northeast monsoon, there is no long shore drift from the northeast that might be the cause for the inward curving of this spit (Ahmad 1972). The southwestern shore of Rameswaram has a tongue shaped spit. SOI toposheet of the year 1969 does not shown any spit but recent IRS LISS-III imagery (1998) clearly shows the spit. Hence it may be assumed that these spits are recently formed. It can be explained that the Rameswaram spit may have been the result of littoral current from Palk Bay to Gulf of Mannar during northeast monsoon period. Beach ridges Beach ridges are moderately undulating terrain features of marine depositional type, formed during Pleistocene to Recent age, in the plains of Gulf of Mannar coast. In the Gulf of Mannar coast areas between Mandapam and East of Vaippar River are covered by well-developed beach ridges. There are twelve beach ridges observed in the region. Almost all beach ridges in the study area are parallel to each other, and cover an area of 155.49 km?and trend from east to west and northeast to southwest direction. On the basis of the nature and dispositions of beach ridges, it can be grouped into (i) Beach ridges south of Vaigai River, (ii) Beach ridges between Kotangudi River and Palar River, (iii) Beach ridges between Palar River and Gundar River system, (iv) Beach ridges between Gundar River and Vaippar River and (v) Beach ridges south of Vaippar River. Swales and backwater zone Swales and backwater zones are seen between coastal plains of Mandapam and Kottakkarai River; they are branched and arranged in series of linear patterns. They are situated almost parallel to the present coastline. Prominent backwater zones have been observed in the coastal plains between Valinockkam and Vaippar River, Mandapam and Southeast of Tiryppullani near Tinaikkulam. These are divided in to two parts by beach ridges. The coastal areas between Mandapam and Tinaikkulam, Valinokkam and Krishnapuram and North of Terku Mukkaiyur and Tukukankulam consist of prominent and wide backwater zones. These three backwater zones are connected by small, linear and narrow swales to the sea by means of few creeks, which supply water from sea to backwater channels during high tide. The basin bed is composed of silt and mud. The adjacent low lying area, as a part of swale zone is used at present for salt production. Mud flat Mud flats are wide expense of deposit of clay, silt, ooze, etc (Davies 1972). The mudflats are observed near Vaippar River mouth, around Valinokkam backwater lagoon, Kallar River mouth and Gundar River mouth. The area covered by mudflat has been estimated to be 14.50 km? Off shore islands and coral reefs A chain of 21 low islands has been observed along the offshore region of Gulf of Mannar(Table 3). It extends from south of Rameswaram to Tuticorin. All islands are made up of a calcareous framework of dead reef and sand. They have a low and narrow sandy coast and some of them have rocky coast. Around all offshore islands, well-developed coral reefs have been noticed. Geomorphologically, coral reefs in this area are of fringing type, though some patchy corals are also observed in between Appa Island and Pilliyarmuni Island, and in some areas like Bharathi nagar coast and southeast coast of Kariya Shuli Island. Wave cut platform Table 3. Areal Distribution of Offshore Islands and Types of Reefs and their Areal Extent Sl. No Islands Island Area(km? Coral Reef Reef type Area(km? 1 Van Island 0.245 Fringing type 1.090 2 Koswari Island 0.241 Fringing type 1.474 3 Kariya Shuli Island 0.166 Fringing type 0.702 4 Uppu Tanni Island 0.377 Fringing type 0.644 5 Shalli Island 0.126 Fringing type 0.249 6 Nalla Tanni Island 1.248 Fringing type 1.250 7 Anaipar Island 0.229 Fringing type 0.888 8 Palliyarmunai Island 0.134 Fringing type 0.687 9 Appa Island 0.410 Fringing type 3.612 10 Talairi and Valai Island 1.072 Fringing type 9.268 11 Muli Island 0.170 Fringing type 1.208 12 Musal Island 1.836 Fringing type 27.73 13 Manalli Island 0.353 Fringing type 14 Manalli Putti Island 0.037 Fringing type 15 Pumurichan Island 0.187 Fringing type 8.320 16 Kovi Island 0.482 Fringing type 17 Kursadi Island 0.740 Fringing type 18 Shingle Island 0.191 Fringing type 1.023 19 Near Bharathi nagar --- Patchy type 0.131 20 Between Appa Island and Pilliyarmunai Island --- Patchy type 3.981 21 Southeast of Kariya Shali Island --- Patchy type 0.969 Wavecut platforms are common in the coast of Mandapam, Ramaswami Madam, Pudumatam, Valinokkam etc. At Pudumadam coast, hard and tough sandstone platform occupies the intertidal zone. South of Valinokkam coast very extensive wavecut platform has been observed and erosional features are widely seen. Sea cliff and sea cave Along the coast of Gulf of Mannar cliffs have been observed in Mandapam, Rameswaram, Pudumatam and Appa Island coastal areas. Generally the sea cliff and caves are made up of calcareous sandstone and located at the high water level. Due to intensive action of waves on cliffs, at some places, sea caves are formed. Such caves have been observed near Mandapam coastal area and Southwestern and Southern coastal areas of Appa Island (Figure 3). At some places, these features have been destroyed due to slumping of upper cliff materials. Figure 3 Sea caves and cliffs at Appa island coast Waterlogged land Water logged land is the area where the water is at or near the surface and has been stagnant for most part of the year. Such lands usually occupy low-lying areas, topographically. In the study area around the northern part of Rameswaram Island some waterlogged lands have been observed. In the areas like Pillaikulam, Surantidal and Mangaud, this type of features has been observed. The total water logged land in the study area has been calculated to be 5.96 km? Strandlines In the Gulf of Mannar coast from Tiruppullani to Mandapam, eight series of strandlines in curvilinear form have been observed. The general trend of the strandline is in the east to west direction. In the south of Rameswaram area also, curvilinear strandlines have been observed. Fluvio-Marine Landforms Deltaic plain Deltaic plains are predominantly controlled by fluvial processes. In the study area deltaic plain is considered to be of Pleistocene to Recent age (Loveson 1993). The areas around the river courses of Vaippar, Gundar, Palar and Kottakkarai Rivers, had vast deltas, but at present they are found to be inactive. The deltaic plains are marked by flat and vast areas, having vegetation cover. Number of tanks has been noticed on the deltaic plains. The total area has been estimated to be about 221.69 km? Fluvial Landforms Flood plain Well-established rivers usually have their floors covered with alluvium, in which the normal flow channel is covered. The surface of low relief on the alluvium from the banks of the low-water channel to the base of the valley walls is called the flood plain of a river. Flood plain and their major morphologic subdivisions are primarily deposited landforms. Floodplains have been very clearly observed along the riverbanks of Kallar, Vaippar and Gundar Rivers in study region. These flood plains are inactive, which is covered with thick vegetation. The total estimated area of flood plain in study region is 24.43 km? Natural levee Land forms in deltaic regions include natural levees bordering river channel and backed by lowering of the swamp or flooded depression in the lower parts of the river valleys (Bird 1984).The over bank deposits are located more or less parallel to the riverbank. Generally, the levees are mainly seen adjoining the meandering course of the rivers. A natural levee has been observed in the Gundar River basin. The width of these levees encountered ranges from 2 to 3 km. and covers an area of 1.10 km? Flood basin Flood basin occupying the shallow reaches of the flood plain consists of mostly gray brown sandy and silty clay and clay. Kottakkarai River surface has a flood basin with an area of 26.83 km? Aeolian Landforms Sand dune complex Almost entire coastal plains in the study area are covered by sand dune (Figure 4). The area in between swale system and shoreline is marked by dune complex. The area covered by dune complex has been estimated to be about 469.10 km? However, extensive spread is observed around Rameswaram Island, Mandapam, Mangudi, Bharathinagar, Valinokkam, Thunamariyur, Terku Nerippaiyur and Tuticorin areas. In other places the areal spread is less. Numereous dunes have been observed the places like Tuticorin, Taruvaikkulam, Sippikkulam, Terku Narippaiyur, Bharathinager near Keellakkarai, Valinokkam, Mandapam and Rameswaram are situated on the dune complex. Aeolian process is dominating in this zone and its intensity can be seen in the migrating dunes in Tuticorin itself. Thruvaikkulam and the other above-mentioned areas also exhibit features similar to those in Tuticorin area. Figure 4 Sand dunes at south of Rameswaram Island Teri dune complex In the coastal plains between south of Vaippar River and Tuticorin near Maravanmadam seven patches of teri dune complexes have been observed with a thick cover of vegetation. In the area north of Panaiyur, oval shaped teri dunes with sparse vegetation have been observed. The areal extent of this dune has been calculated to be 6.27 km? Another two teri dunes have been observed near Kumarapuram. They cover an area of 2.67 km? Near Pandiyapuram, rounded dune complex has been observed with thick vegetation. The area of this dune has been estimated to be 4.27 km? Near Milavittam small rounded patches of teri dune complex covering an area of 2 km?has been observed. Two other teri dune complexes have been observed near Maravanmatam area with thick vegetation. They cover an area of 3.08 km? All teri dune complexes in this area are trending in the northeast to southeast direction. Biogenic Landform Back swamp Back swamps occur in marshy areas along the coast; they particularly occur at the edge of the tropical or sub-tropical seas, in bays lagoons and estuarine regions (Gerlech 1973). Small back swamp areas have been observed in the areas near the mouth of Korampallam odai around Tuticorin coast and west of Rameswaram Island. They cover a total area of 1.87 km? These swamps are covered by mangrove vegetation. Coastal Erosion and Accretion The shoreline change map derived from Survey of India Topographic sheet (1969) and IRS LISS-III (1998) imageries are shown in figure 5 and 6. In the coastline between Dhanuskodi and Tuticorin, erosion and accretion areas have been observed. The areas of erosion and accretion have been estimated as 4.34 km?and 23.49 km?respectively over a period of 30 years (1969 to1998). The average widths of accretion and erosion have been calculated from previous shoreline (1969) and present shoreline (1998) as 143.11m and 106.50 respectively during the past 30 years. The rates of accretion and erosion have been approximately calculated to be 4.7m/year and 3.5m/year respectively along the study area. Figure 5 Shoreline change map between Tution and Vaippar River (1969-1998) On the basis of the distribution of coastal erosion and accretion, the study area has been classified into 1) Shoreline between Tuticorin and Vaippar River, 2) Shoreline between Vaippar River and Gundar River, 3) Shoreline between Gundar River and Palar River, 4) Shoreline between Pallar River and Kottangudi River, 5) Shoreline between Kottangudi River and Thoniturai and 6) Shoreline of Rameswaram Island. Island Erosion and Accretion There are 21 islands between Tuticorin and Rameswaram. These islands are sedimentary landforms. Fringing reef along the windward side of the islands protects the islands from direct wave action. Morphology of sandy islands is very dynamic. The morphological variations of islands occur due to natural and anthropogenic agents. The natural agents include erosion, accretion, wave, current, sea level variation etc. Anthropogenic impacts are construction of breakwaters, discharging of effluents, mining of coral reef etc. The comparison of 1998 map with 1969 map of islands of Gulf of Mannar shows changes in their shape, size and location and these have been caused by erosion and accretion. The total areas of erosion and accretion were calculated as 4.16 km?and 3.31km?respectively during 30-yearsperiod (1969to1998). Island erosion and accretion are caused mainly by the action of wave and wave-induced current and longshore current along the shores of islands. In the study region the waves are in the northeast and southwest direction and wind direction is similar to that of wave direction. According to Chandrasekar (1996), coral reefs are destroyed by siltation, logging and illegal mining in Tuticorin group of islands. During the last 50 to 60 years, mining of stony corals from the reef area, especially from, Tuticorin group of islands, for building, industrial and chemical purposes have destabilised the formation of Tuticorin group of islands (Ramanujam et al 1995). Hence the waves hit directly on south, southeast and southwest shores of these islands, causing erosion. These eroded sediments are then transported by wave-induced currents and deposited at the leeward sides of these islands. By such repeated processes, the windward sides of the island get reduced and leeward sides of the islands are accreded. Hence size, shape and location of these islands have changed. All islands in Tuticorin group have been migrating towards mainland (Figure 5). According to Ramanujam et al (1995) landward migration and deterioration of islands in Tuticorin region are caused by sea level variation and mining of reef material. In Keelakkarai and Mandapam groups (Figure 6) of islands, generally the islands are seen to move towards south (seaward side). The island erosion has been mostly identified along the northern side of the islands (landward side). Evidences of submerged trees and sharp edged coasts are found along the northern shores of these islands. This is because the long shore current and tidal current flow towards south, along the northern shore of islands, then erode the coast, this eroded materials are transported and deposited on seaward side of the coast. While high velocity waves are moving towards northern shores of islands with the littoral sediments and coming across the coral reefs, these sediments will be dropped on the coral reefs, wave speed reduces and turn into a wave-induced current. By repeated action of such processes the area between Islands and reef edge get shallow and reefs have submerged. Evidence of submerged reefs is identified along south east of Kursadai Island. Figure 6 Shorline map of Ramswaram island (1969-1998) Bathymetry Mapping Any changes in sea floor may be the result of sea-level variation or to a change in the elevation of land surface. Changes in absolute water-surface levels are worldwide due to the interconnectivity of the oceans and are termed eustatic changes. Changes in the absolute level of the land are localized. They may be due to tectonic adjustments or due to adjustments caused by their distribution of weight on the land surface. As and when sedimentation or ice build-up occurs, such changes are known as isostatic. A rise in the sea level or down warping of land would involve the opposite movements of sea and land. Synonymous with positive and negative changes are the forms of sea-level transgression and regression, although in many cases these terms also refer to the horizontal movement of the shoreline associated with vertical changes of sea level. Recent depth contour map of 1999 (Figure 7) has been compared with bathymetry map of 1975 (Figure 8a&b); it reflects that the seafloor level decreased along the coastal and around the islands in the study area. It may be due to emerging of land or lowering of sea level (due to tectonism) and sediment deposit. In very few places particularly at river mouths and in island areas, the sea floor level has increased, which may be due to erosion caused by anthropogenic activities. Figure 7 Bathymetry map of Gulf of Mannar (1975) Figure 8a Bathymetry map of Tuticorin coastal region (1999) Figure 8b Bathymetry map of Tuticorin coastal region (1999) The average depth reduction of seafloor along the coast of the study area has been estimated as 0.51m over a period of 24 years. The average decrease and increase of depth around the islands in the study area have been calculated as 0.56m and 0.38m respectively. Assuming that the rate of change of depth of sea floor is uniform over a year, the rate of decrease of depth is estimated as 0.021m/year along the coast and 0.023 m/year around the island, and also the rate of increase of depth as 0.015 m/year around the island. The annual sediment deposit on Gulf of Mannar sea floor is 0.001m/year (Basanta Kumar Jena 1997), so it will become 0.024m for a period of 24 years. As found from the present study, the decrease of depth for the period of 24 years (1975 to 1999) is 0.51m. Out of this 0.51 m of decrease of depth, sedimentation will account for about 0.024m. The remaining 0.486 m reduction in depth may be due to emerging of land or lowering of sea level (by tectonic activities). From this, the rate of emerging of land or lowering of sea level can be estimated as 0.02m/year. Land use/land cover mapping Geocoded IRS LISS-II (April 1988) and IRS LISS-III (May 1998) imageries on 1:50,000 scale were used for visual interpretation to prepare the land use/land cover map. In the present study, the classification system developed by National Remote Sensing Agency for the national land use/land cover mapping (Gautham and Narayan, 1982) has been adopted. The land use/land cover maps derived from IRS LISS-II and IRS LISS-III imageries are shown in the Figure.9 and 10. The areal distribution of various land use/land cover classes for the years 1988 and 1998 and their changes are shown in Table 4. Figure 9 Coastal landuse/landcover map of Gulf of Mannar coastal area derived from IRS LISS-II satellite data (1988) Figure 10 Coastal landuse/landcover map of Gulf of Mannar coastal area derived from IRS LISS-III satellite data (1998) Table 4. Areal Distribution of Land use/Land cover and its Changes observed during the period from 1988 to 1998 Sl.No. Land Use/ Land Cover Classes Area(km? 1988 Area (km?1998 Changes observed from 1988 to 1998 1 Settlement 22.070 34.930 +12.860 2 Crop land 539.860 417.660 -122.200 3 Fallow land 50.170 52.560 +2.390 4 Agricultural plantation 185.560 192.570 +7.010 5 Natural Forest 3.860 0.062 -3.800 6 Forest plantation 115.290 145.020 +29.730 7 Mangroves 0.651 1.510 +0.860 8 Island vegetation 3.810 2.280 -1.530 9 Salt affected area 19.910 6.800 -13.110 10 Water logged area 3.620 7.070 +3.450 11 Marsh vegetation ---- 0.375 +0.375 12 Scrub land 243.480 294.020 +50.540 13 Rocky coast ---- 2.540 + 2.540 14 Mud flat 2.860 4.700 + 1.840 15 Sandy area 39.280 36.800 -2.480 16 Tanks 70.840 74.850 + 4.010 17 Salt pan 27.730 48.930 +21.200 18 Aquaculture ponds ---- 3.170 +3.170 19 Flood affected area ---- 0.800 +0.800 Land use/land cover changes Multi temporal satellite data used in the present study enabled observing the land use and land cover changes in the study area from 1988 to 1998. Over the past 10 years, areas of some land use classes have increased, areas of some classes have decreased and some categories have changed in to another category in the study area. These changes are taken place due to the increase in population in towns and villages along the coast and various kinds of economic activities. The major land use/land cover changes has occurred in the following classes: (1) cropland area has reduced from 539.86 km? to 417.66 km? (2) fallow land increased has from 50.17 km?to 52.56 km? (3) agricultural plantation has increased from 185.56 km?to 192.57 km? (4) forest plantation has increased from 115.29 km?to 145.02 km? (5) scrublands has increase from 243.48 km?to 294.02 km? (6) sandy area has reduced to 36.80 km?and (7) tanks has increased from 70.84 km? to 74.85 km? Socio-Economic study Fishing has been the sole occupation of several thousands of fishermen families living along the coast of Gulf of Mannar. They have been in close proximity with the sea, so that, their life-style, culture, community and social life have centered around the sea. The main livelihood activities of the fishermen residing in the villages adjoining the study area are (i) fishing, (ii) seaweed collection, (iii) chanks collection, (iv) coral mining, (v) fire wood collection and (vi) agriculture. Coral reef mapping Geocoded IRS LISS-II (April 1988) and IRS LISS-III (May 1998) imageries on 1:50,000 scale were used for visual interpretation to prepare coral reef maps. In the present study, the classification system developed by Space Application Center for the national coral reef mapping (Anjali Bahuguna and Nayak, 1994b) has been adopted. The coral reef maps derived from IRS LISS-II and IRS LISS-III imageries are shown in Figure.11 and 12. The areal distribution of coral reefs, reef vegetation, degraded coral reef, etc for the years 1988 and 1998 are shown in Table 5. Figure 11 Coral reef map of Gulf of Manner derived from IRS LISS-III (1988) satellite data Figure 12 Coral reef map of Gulf of Mannar derived from IRS LISS-III (1998) satellite data Table 5. Areal distribution of coral reefs and its changes observed during the period from 1988 to 1998 Category Area (km?1988 Area (km?1998 Changes1988-1998 Reef area 73.70 48.18 -25.52 Reef vegetation 12.31 10.15 -2.16 Degraded reef (Coral mining) - 2.68 +2.68 Degradation of coral reefs The degradation of coral reefs in the Gulf of Mannar is quit severe due to the human stress (anthropogenic) and also by natural agents (Mahadevan and Nagappan Nayar 1972; Pillai 1975; Venkataramanujam et al 1981; UNEP 1985; Wafar 1986; Anon 1987; UNEP/IUCN 1988; Venkataramanujam and Santhanam 1989; Chandrasekaran 1996; Dhandapani 1997; Ramanujam and Mukesh 1998). Arjan Rajasuriya et al (1999) is of the opinion that the coral mining for lime, sand mining, pollution, sedimentation, fisheries, population pressure, commercial shell collection and industrial development has led to the increase in coral reef degradation in India. The total coral reef area in Gulf of Mannar based on the present study (1998) is about 61.01km? of which reef area covers 48.18 km? reef vegetation covers 10.15 km?and degraded coral occupies 2.68 km? The analysis of multi-date satellite data indicates that nearly 25.52km?area of coral reef was lost over a period of ten years (1988-1998). Through remote sensing the demarcation of dead coral is possible within 2 feet beyond not possible. During the time of ground truth it was identified that nearly 67.2% of the corals were dead corals, 13% of coral reef are directly removed by coral mining and the remaining 19% were live corals. During the time of ground truth, the following activities were observed to be the major causes in degradation of coral reefs in the study area (1) anthropogenic Stresses (Human Activities) and (b) natural Stresses Anthropogenic stresses (Human activities) Increase in human population and economic activities in the study area have increased the pressure on the adjacent reefs. The major causes of coral reef degradation are: Over fishing and destructive fishing practices Sea weed collection Commercial shell collection Coral mining Poor land use practices Coastal urban development Harbour and dredging activities Industrial development and pollution Fishery is the primary economic activity of the people of the coast of Gulf of Mannar. There are about 50,000 fishermen engaged in fishing activity. The marine fish catch from Gulf of Mannar during 1992-1996 was between 0.55 and 1.02 lakh tons, with an average of 78, 511 tons. The pelagic fishes formed 54.38%, demersal fishes 34.85%, orcstation 5.69% and mollusks 5.08%. Nearly 20% of total fishes in Tamilnadu are being caught from Gulf of Mannar, of which 44,600 tons of pelagic fishes and 35,200 tons of demersal fishes. The fishermen collect these holothurians by diving in shallow reef areas. Much of the fishing is carried out on / and near the coral reef area. In many areas of Gulf of Mannar, the majority of the reefs have been destroyed by fishing due to modern fishing techniques like mechanised launches with trawling net and gill net and also by destructive fishing practices such as dynamite fishing near Tuticorin area. These destructive methods cause direct damage to the corals and indirectly affect their bgrowth by increasing turbidity and suspended sediment in the coastal waters and reducing the clarity of seawater and increasing sediment loads on reefs. Seaweeds form one of the most important marine living resources in Gulf of Mannar. Because of their commercial value, the seaweeds are harvested by fishermen for agar industry. More than 1000 fishermen and women are engaged in seaweed collection in the study area and nearly 5000-7000 tons (dry weight) seaweeds are harvested annualy. The continuous harvesting of seaweeds results in the decrease in areal extent of seaweed area, which was estimated to be about 2.16 km?area over ten years (1988-1998). The decreasing of seaweeds may lead to coastal erosion and removal of the coral reefs. Commercial shell collection is another human activity which causes coral reef degradation to some extent. Shell collection is one of the important economic activities of the fishermen living in the study area. Nearly 770 fishermen are engaged in this occupation. This activity increases the sedimentation in coastal water leading to the death of coral. Coral mining activity has caused extensive degradation of reefs, coastal erosion and sedimentation in a number of countries all over the world. In the study area coral mining is the major human activity, which causes coral reef degradation. Coral reefs are used on a large scale as raw material by the lime industries. In Tuticorin group of islands this activity is very active and the corals have been used for building, industrial and chemical purposes. The rapid development of lime based industries in and around Tuticorin has accelerated the coral mining. Nearly 250 skilled divers and about 50 boats are engaged in the coral reef mining. The use of explosives for reef mining, has produced very serious problems to the coastal and marine ecosystems like coastal and island erosion and sedimentation, coral reef degradation and reduction of marine faunal population. Pillai (1973) estimated the annual exploitation of reefs in the study area to be about 90,000m? Venketaramanujam et al (1981) reported that about 15,000 tons of the corals are removed from Tuticorin group of islands annually. Mahadevan and Nayar (1972) estimated that 25,000 tons of corals are exploited annually in Gulf of Mannar. The analyses of multi-date satellite data indicate that nearly 2.68 km?of coral reef area has been mined over a period of ten years from 1988 to 1998 and nearly 0.267 km?of shoreline of Tuticorin group of islands have been eroded over a period of thirty years from 1969 to 1998. The net result of removal of corals is that the depth has increased to about 1m. This has also been confirmed by the bathymetry map pertaining to Tuticorin group of islands. Another cause for the damage of coral reefs is poor landuse practices, such as agricultural activities, changing land use practices and deforestation etc, which increases land derived sediment flowing onto coral reef. In the present study it was observed that nearly 470.22 km?of land behind the coast of Gulf of Mannar has been under agriculture land, of this nearly 417.66 km?area fall under the category of cultivated land. Cultivation in this area is poor and intensive method of cultivation is generally practiced during rainy season. The poor agricultural practices increase the agriculture waste like pesticides and fertilizers, which are dumped into the coastal water through surface runoff during rainy season and through rivers. This encourages rapid algal growth, which chokes coral polyps and cut off the supply of light and oxygen. This problem is common in Tuticorin group of islands, Vembar group of islands and Keelakkarai group of islands. Another major cause for the coral reef degradation is changing land use practice. The analysis of multidate satellite data indicates that nearly 2.45 km?of cropland has been converted in to salt pan (1.86 km? and aquaculture pond (0.59 km?; 2.74 km?of agriculture plantation has been converted into cropland (1.77 km? and salt pan (0.97 km?; 10.74 km?of forest plantation has been converted into agriculture plantation (6.19 km? and forest blank (4.54 km?; Nearly 68.78 km?of scrubland has been converted into settlement (7.10 km?, saltpan (2.59 km?, aquaculture ponds (0.18 km?, forest plantation (4.31 km?, agriculture plantation (12.10 km?, fallow land (7.60 km? and cropland (34.90 km? over a period of ten years (1988-1998) along the coast of Gulf of Mannar. Another important human activity encountered in Gulf of Mannar is destruction of natural forest and island vegetation. Through remote sensing it has been clearly identified that nearly 3.80 km?of natural forest has been destroyed for fuel wood and cultivation by human beings along the coastal plains of the study area, and nearly 1.53 km?of island vegetation has been cut down for fuel wood over a period of ten years (1988-1998). These changing landuse practices, destruction of natural forest and island vegetation accelarate the soil, coastal and island erosion and increases the input of inland-suspended soil into coastal waters. The increase in suspended soil and other suspended materials in coastal waters smothers the reefs and causes their degradation. Increasing urban population along the coastal area has lead to pollution due to sewage discharge into the coastal waters. Discharge of sewage is responsible also for the loss of coral reefs in large quantities. Along the coast of Gulf of Mannar, five coastal towns are located and due to rapid growth of population, the urban areas have increased in area from 22.07 km?to 34.92 km?over a period of ten years (1988-1998). As a result of this rapid urbanization there is an increase in the amount of discharge of sewage waste into coastal waters, which has caused the death of corals in Gulf of Mannar. Dredging and other harbour related activities like anchoring and ship grounding have increased sedimentation in the coastal waters and caused the degradation of coral reefs (Brock et al 1966). In the study area the New Tuticorin harbour has been constructed at the upstream side of the Tuticorin group of island. This harbour has a breakwater, which has changed the current flow pattern and sediment movement along the Tuticorin coast and islands. The periodic dredging operations at the entrance of the harbour and anchoring of ships have increased the amount of silt plume, which inturn has increased water turbidity, and lowered the light intensity, leading to coral death. This problem has been extensively observed in Tuticorin group of islands. Industrial development and their waste discharge into coastal water affect the coral reefs. The coast of Gulf of Mannar is experiencing an accelerated growth in the rate of industrialization, since the New Tuticorin port became operational. The industrial development has led to marine pollution and coral reef degradation. The dumping of fly ash slurry into Karapad Bay by the Thermal power station resulted not only in filling up of an extensive portion of the bay, but also letting out of ash directly in to the sea causing extensive damage to the coral reef. Dharangadhare Chemical Works Ltd, Plastic Resins and Chemical Ltd and Tuticorin Alkali Chemical Ltd are the major chemical industries in Tuticorin area, which discharge their effluents into open sea. These effluents contain mercury, sodium carbonate, ammonium chloride and sodium bicarbonate etc. which are harmful to the coral reefs and the environment. Natural stress atural?problems are those that are not caused by man, but occur naturally over the long history. Natural problems such as storms, waves, sea level variation, fresh water runoff, volcanic activity etc cause the degradation of coral reefs. Various authors have studied coral degradation due to natural activities in the Gulf of Mannar (Foot 1888; Stoddart and Pillai 1973; Pillai 1975). Through remote sensing and extensive ground truth it has been identified that natural activities such as monsoons, waves, currents, tides and sea level fall have caused the coral reef degradation in Gulf of Mannar. During the northeast monsoon period highly turbid and low saline water from Palk Bay is transported to Gulf of Mannar by long shore current along Pamban channel. This increases the silt in Gulf of Mannar waters and cause the death of coral reef. According to Pillai (1971) several corals die yearly during northeast monsoon period. In addition to this, during the low tide period, the tidal current moves towards south and transport some amount of sediment to Gulf of Mannar. Towards the seaward side of the island, the high velocity waves hit against the reef edge (wave breaker) and a fall in the velocity of waves cause the wave induced current forms which moves towards the island and drop the littoral sediment on reef leading to coral degradation. The prolonged and repetition of such action, result in the area between island and reef edge to became shallow. The multi-date bathymetry map analysis indicates that nearly 0.24m depth has decreased over a period of 24 years on the seaward side of Pumurichan, Kovi and Kursadi Island. This process has also caused the coral degradation. This problem is observed mainly in the Mandapam group of islands. Many authors report that the sea level in Gulf of Mannar is on a regression phase (Foot 1988; Sewell 1935; Ahmad 1972; Stoodart and Pillai 1972 and Loveson and Rajamanicam 1990). The sea level fall causes rising of coral reef. The raised reefs are the reliable indicator of sea level fall. Raised reefs have been observed in many places of Gulf of Mannar. The multi-date shoreline map and bathymetry map indicate that sea level has fallen by 0.36m over a period of 24 years (1975-1999) and the shoreline has migrated 143.11m towards the seaward side over a period of 30 years (1969-1998). Sedimentation is a major factor controlling the distribution of reef organisms and overall reef development (Macintyre 1988). The reduced level of light due to suspended sediment in the water column can reduce coral growth (Hubbard et al 1986) and has an impact on natural zonation patterns (Morelock et al 1983). Excessive sedimentation can also discourage the settlement of coral larvae. Most of the studies on the effects of turbidity on corals have concentrated on anthropogenic-increased sedimentation and turbidity. According to present study, nearly 67.2% of the coral reefs in Gulf of Mannar is not in living condition due to sedimentation and turbidity caused by anthropogenic and natural activities. The anthropogenic activities like destructive fishing methods, seaweed collection, commercial shell collection, coral mining, intensive agriculture, changing land use practices, deforestation and industrial waste input etc. and natural activities like monsoon, wave action, ocean current and tides were identified as the agents that increase the sedimentation and turbidity in coastal waters of Gulf of Mannar. 5. Recommendations Based on the present study some of the followings are the recommendation for manage the coral reefs in Gulf of Mannar It is necessary to create awareness among the coastal communities in the study area, in order to protect and conserve the coral reefs through effective involvement of educational institutions and NGOs. Stringent measures need to be under taken with immediate effect to ban coral mining and to take into task those involved in or those who encourage the exploitation of corals for any purpose. Patrolling the coast to check coral mining should be carried out. Law should be enacted to regulate and stop trawl boat operation in the zone earmarked for non-mechanized boat. The Department of Forest and the Department of Fisheries should take steps to stop anchoring of vessels on coral reefs, pair trawling and dynamite fishing. Indiscriminate picking of budding seaweeds needs to be banned. Commercial shell collection should be controlled and closely monitored. Marine Resources Management Centres should be established to improve the skills of fishermen communities in areas other than coral mining, which in turn will lead to efficient management of coral reefs. Initiatives to train the coastal fishermen in mechanized boat operation, shell collection, seaweed collection and conservation of coral reefs need to be taken up so that they could find alternate sources of livelihood. Deforestation along the coast and islands of Gulf of Mannar should be banned. The Forest Department should take up afforestation along the coast and islands of Gulf of Mannar to protect soil erosion. Discharging of untreated sewage and urban wastes into the coastal waters should be totally banned. Dumping of any kind of material that would affect the coral reef ecosystem should be banned.

247

积分

648

金钱

134

帖子

初级水师

88
发表于 2006-12-21 16:31:14 | 只看该作者

RS为基础,谈数字城市RGIS的发展

摘要 :上海是我国长江经济带的龙头和长江三角洲的发展前缘,其区位的优势和快速的发展,对GIS信息库的建设提出了特大城市化的要求。 本文指出了如今GIS的误区,即采用含有少量信息的地形图作为GIS基本平台。并提出了以RS信息为主的地理信息系统--RGIS,RGIS采用RS技术捕获城市的面貌,直接以高分辨率的遥感影像作为GIS基础平台,建立一个大比例尺的航空与航天遥感信息场,使得城市管理者和建设者有一个能在计算机上就能看到全市综合特征的信息库,即综合信息场。 RGIS不仅适用于上海这样的特大城市,也适用于各省大、中、小城市。   关键词 : 城市信息化 遥感影像 RGIS 综合信息场   DIGITAL CITY RGIS Development Based On RS Chen Aili1 Sun Jianzhong2 (1 Department of Geography , East China Normal University, Shanghai 200062) (2 Shanghai City Development Information and Research Center 200032)   Abstract: Shanghai is the center of the Yangtse River Economic Area and the developing front line of the Yangtse Delta. Her area advantage and accelerating changes require metropolitan information for the GIS database construction. This paper points out the GIS common failing of using topographic maps with little information and suggests RGIS in which RS information is the main content. It catches the general view of the whole city by RS technology and takes high resolution RS Images as GIS basic platform directly. It builds up a large-scale aviation RS digital information field and the managers and planners can have a general picture with characteristics of the city on PC from this information database, i.e. the General Information Field. This System is not only effective to the metropolis of Shanghai but also applicable to cities of different scale. Key words: City informatization RS image RGIS General Information Field   RS为基础,谈数字城市RGIS的发展 上海是我国的国际化大都市,也是我国长江经济带的龙头和长江三角洲的发展前缘;其区位优势和快速的变化对城市的管理提出了很高的要求,需要依靠现代化、自动化的管理设施和手段,提高城市管理的科学化,减少决策的主观性、盲动性。1998年6月江泽民主席在接见两院院士的讲话中明确指出,要重视数字地球的研究。此后,对应数字地球的数字城市的重要概念,应运而生。因此也对航空遥感的GIS信息库的建设提出了特大城市信息化的要求。本文旨在为信息管理体制上,还是在RS技术上,或者就是GIS研究开发的思路,形成一个数字的人口资源环境的城市基础图像数据库基础,为把上海市建设成为国际经济、金融、贸易、航运中心之一的信息化服务。 1、国内外GIS系统概况 遍阅所有的GIS信息系统,实属是一种与地面位置相关的信息系统,每种系统皆可以自成体系,差别仅在于功能。如最常见的ESRI公司的ARC/INFO,包含几千个GIS分析功能,致力于为用户提供优质服务。另外还有GeoMedia,可利用Gemedia Web Map工具,动态生成地图,支持GIS数据库的属性等,也能在“Hot Spot”功能下产出静态地图。MapInfo公司的MapInfo Professional 是基于Windows 之上的桌面地图软件,用于存取、可视化、分析综合的地理数据,以及高级的制图工具、远程数据库存取等。MapXtreme是一个基于Web的地图应用服务器,因而可以将地图信息通过Internet/Intranet传送到整个企业乃至更广的广大用户。Bentley公司主要生产面向工程的软件,它覆盖的工程领域有建设/设计、地理、土木、工厂、机械等。国内的GIS产品功能较弱,有:CityGIS采用面向对象的设计和编码技术,它的最显著的特点就是图形操作灵便、实用尤其是对于大数据矢量和图像;另外它的另一特点体现在它的图形编辑功能,有利于进行屏幕数字化。MapGIS是国家优选的具有自主版权的地理信息系统软件平台,它有三大特点:1.可制作具有出版精度的复杂地质图,2.海量无缝地图数据库管理功能,3.高效的空间分析功能。它将传统的地图制图软件、数据库软件以及数据分析软件功能汇集到一个统一的平台,从而为多源地学数据的综合评价于分析,创造了一个理想的环境。 2、GIS的误区 在建立“航空遥感信息系统”时,随城市发展需求发现,当全世界都在热衷与研究开发GIS时,却存在一个较为隐蔽的误区,而这误区一直影响到我国,如国内行业以为地理信息基础平台,都是测绘地图,这种误区将导致我们的认识、我们的出发点,永远停留在地形图所的含的少量信息上,为此信息采集和应用将永远滞后于全世界孜孜不倦追求的高分辨率遥感影像,包括航空遥感和卫星遥感影像。 一种真正的地理信息系统,其含有地表上下空间的各种地理信息,而绝非像仅靠接触式的勾绘过的地形图作为基础地理信息那样缺乏综合性。应该认为,基于接触式勾绘地形图作为基础地理信息显然满足不了现代城市管理需求,也难称得上基础。因为基础必然具有在此基础上可以获得更多的信息和综合信息量。而地形图通常指大于1:100万比例尺、表示地物复杂程度,反映地面主要要素,如地貌、水文、工程建筑、居民点等;适时地测量和调绘成直接成果,是国家最基本地地图,是编制其他比例尺的土地的基础,而并非是反映内在联系综合性很强的地表遥感影像,所以若把地图作为基础地理信息数据来作GIS,显然远远不够。又因为,当代地理学倾向于对人地关系的地域系统进行综合研究,而一般地形图和城市地图,几乎无法去进行地理分析研究,没听说用地形图做地理信息地分析研究,以及概括地理和地理学内涵。常规地理信息系统,若以地形图作为基础地理信息数据,无疑都已碰到很大困难;而只有抓准地理学精髓观念和概念,从地理信息系统发展的观点去分析。 常见GIS不实用的原因是:1.缺乏图像信息数字化标准和遥感图像库。2.专题成果相互之间的迭置分析尚未真正地建立。3.没有功能灵活与信息传递的GIS软件平台。很多系统还只是一种表面上的结合,尚未达到学术与应用概念的结合、标准与类型的结合,远景与近期目标的结合,好像是无标准的记录系统,无法更新续用,另外如今GIS运行的统计数字,经常不以RS为基础,而以地形图作空间特征介绍,常含有“假数真做”的文章,而不用遥感影像作为具体的电子地图,仿佛身份证,不用免冠照片,而用素描图,行否?这一点早被国家土地资源管理与监督所证实。充分说明了用遥感照片的方式信息效率要高得多。因此,称为数字城市的基础,必须能够“表达已知、呈现未知、扩大认知、挖掘新知”。 3、RGIS的提出 GIS(以上海城市航空遥感信息系统为例)若是一种以遥感(RS)信息为主的地理信息系统,这类系统有一个最大的特点,其有一个空间特征的综合信息过程,是一种非接触式的获取信息的系统,它是对目前以地形图为数字框架的地理信息系统的一种突破,从这个意义上讲是一种真正的地理信息系统,其含有地表上下空间的各种地理信息,而绝非像仅靠接触式的勾绘过的地形图作为基础地理信息那样缺乏综合性。上海航空遥感信息系统虽然是早在第一轮航空遥感综合调查(1988-1992)的后期开始设想,并在第二轮航空遥感综合调查(1993-1997)期中的1994年开始研制。当时在GIS环境中,遥感信息的应用技术未形成一个实用的系统,GIS表达能力远非今日可比,明显的弱点是对信息的容纳和调用存在问题,尽管通称为“遥感信息系统”, 冠名为“上海城市建设和规划航空遥感信息系统”,简称SARSIS。对第一轮、第二轮航空遥感综合调查各子课题所取得的专题图和调查数据进行数字化处理并开发一些软件模型,试满足遥感信息查询、数据库管理、图形编辑、制图、数据分析和输出,并力求向实用化目标发展,但是缺乏对海量信息及数字城市这样的认识,而是一种迫于“成果”而快速建立的系统。当回顾与检验并找出这些症结的时候,这就为全新的RS和GIS的研究提供了借鉴: GIS必须以RS为基础,以信息流为基础。 GIS定位直接关系到遥感信息库的建库定位和相关技术内容,所以定位是本项目的第一基础:1.要为综合调查建立图象库、文档库服务;2.面对越来越多的遥感图像数据,提出新的方案,包括图像配准和信息处理模型等。要建立一个良好的平台,便于政府、行业管理部门对城市建设、管理进行信息分析和信息更新等工作。前者是信息源,是借助于遥感的原理,或者说应用RS技术捕获城市的面貌的信息。后者是信息处理,是借助于相应的计算机技术开发平台,或者说GIS软件平台作为信息存贮、管理、分析和应用的工具。系统加快了政府管理信息化进程,是适应国民经济和社会信息化发展的迫切要求,尤其是社会公众的电信发展如此之快,媒体传播如此之快,这就加大了政府管理对信息化需求的关注,否则将落后于社会,对政府和企业发展都会有极大影响。同时,是一个动态信息和城市空间信息相关的一种综合显示,而且是一个难度不大的及时信息综合的概念,经过新GIS阶段,即突破为“RGIS”。 RGIS是信息科学、空间科学和地理科学的结合,系统要实现空中对地观察图像数字化、不同比例尺图像迭合分析和不同分辨率图像迭置分析,而建立一个不同点源及不同尺度的遥感数字信息场,使得城市建设和管理者有一个在计算机上就能看到全市综合特征的信息库,即综合信息场。RGIS要体现出以遥感技术和信息系统技术的有机结合,为遥感综合调查信息在进行统一分类和规整处理的技术方案上进行应用的探索研究,RGIS是一个综合分析与表达技术。因此RGIS绝对离开不了综合信息场,也即信息场可视基础主要以RS为基础。其中,地理空间与地学也是一个很有尺度的学问,GIS中社会和国民经济信息等也决不是地图科学。为此,为区别先前的GIS概念,为推广和发展,又不屈服于误解,可称其为RGIS。当你想把GIS作为传统地图的延续,在GIS的开始阶段是允许的。然而,这不是GIS的本意。其本意应当是逐渐对所有的行业信息能包容的综合信息的图。现在已经明朗,最好是以包含了定位与定量内容的RS信息的基础上做行业的几何信息、空间属性与统计的支持决策等处理,这才是RGIS城市地理信息系统。以往地形图的GIS基础已经只是其中的行业图件之一了。因为其他行业管理图件,已经成为各行业自己的GIS基础,实实在在的基础。若同时又强调要以地形图作为所有GIS基础地理信息图,这必将引起对地形图的应用精度和使用期限等问题。从信息化讲,实际上应用RGIS作为管理,就是一个随着管理事件的点源尺度变化而变化的具体的动态信息和静态信息特征。 RGIS绝不是以地形图为基础的地理信息平台,而是以RS影像为基础的确实充满综合信息的系统平台。近期,又被一个有效的事例所证实。某城市的人口统计已经完成,人口普查的分布特征底图,由于其统计底图单元,是以数百人为单元的实际现状,这种小单元大比例关系的底图,统计精度高,而地形图上是缺乏相关联信息的,统计的边界却无法准确落在城市或郊区“正规”的地形图上,唯有依靠能反映地面所有微细的综合信息的彩红外航空遥感数字影像来解决问题,即解决“统计边界”信息落地的问题,这就为人口资源环境问题首先解决了人口统计与地面区域的综合信息相关的表达基础,为建立客观、准确的整个人口资源环境发展和分析,建立了可靠的RGIS基础。有人称矢量地形图是一种最为单一的,只是反映了地物简单的几何边界及其位置,高层建筑与多层建筑在地形图上是区分不出来的,常见一样的形状;地面的微小差别,如植被差别、露裸非露裸土地差别、河海防护堤特征、小路小溪等在地形图上是没有的,建筑物的外形特征、绿化质量特征等都是找不到的。这些常是统计分析、统计单元的信息边界,极其重要,如人口统计单元边界,地形图上无法整合的话,而航空遥感图像可淋漓尽致的反应并准确整合。同时,各基础地理信息系统的矢量线划表达的信息,依据航空遥感地物信息,即可获得非常具体的综合信息,因为在地形图上你所得到的信息太少,新的认识更少,说实在的没有一个城市建设和管理者真的是用地形图来获得管理信息的,因此,不能依靠地形图去承担基础地理信息的重任,而只有依靠高分辨率的遥感信息才能获得,并达到这一目标。换言之,矢量地形图与其他行业管理数字化图是同一种类型的信息,它们都实际上来源于地表真实写照的遥感影像。 4、RGIS的展望 RGIS不仅适用于象上海这样的特大城市,还适用于各省大、中、小城市,尤其是目前,正值西部大开发进入了实质性的实施运作阶段,城镇建设作为区域社会经济活动的中心,正需要有一个这样的信息基础,也就是说不可避免地谈到数字城市建设;密切部门间的联系与合作,相互协调,形成合力,从而有效的提高城市管理的效能。 数字城市:概念来源于数字地球。1992年阿尔。戈尔在《濒临失衡的地球》中写道:。。。。。。称为数字地球的计划,旨在建造一个新的全球气候模型。1998年1月31日阿尔。戈尔再次描述:我们需要一个“数字地球”,一个可以嵌入海量地理数据的、多分辨率的、真实地球的三维表示。在我国21世纪的发展中,经济与社会的全面的可持续发展,城市是第一与人密切相关的人类栖息地,为此保持国际和平、社会安定的大好局面,数字城市的研究将要与城市信息化紧密结合。全世界的大多数人口居住的区域,不是城市就是城镇,因此数字城市也好,城市信息化也好,都以城市为目标,要以人为本的进行研究,也就是说,先要建立城市信息化的理论体系。城市信息化的理论体系将与数字地球、数字城市等直接相关。其中,将直接会以RGIS的概念来加速数字城市的实现,因为它已包容了3S或多S。

2

积分

53

金钱

3

帖子

小小水师

89
发表于 2006-12-21 18:40:52 | 只看该作者
好文章,顶

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
90
 楼主| 发表于 2006-12-21 21:37:23 | 只看该作者

GIS系统在交通规划中的重要性及典型应用




交通规划是确定交通目标与设计达到交通目标的策略和行动的过程。交通规划的目的是设计一个交通系统,以便为将来的各种用地模式服务。交通规划在整个国民经济中具有重要意义,它是建立完善的交通体系的重要手段,解决道路交通问题的根本措施以及获得交通运输最佳效益的有效方法......引入GIS技术,能够提高交通规划工作的效率,简化业务流程,将为下一步建设交通规划行业的辅助决策支持系统打下了良好的基础。   交通规划是确定交通目标与设计达到交通目标的策略和行动的过程。交通规划的目的是设计一个交通系统,以便为将来的各种用地模式服务。交通规划在整个国民经济中具有重要意义,它是建立完善的交通体系的重要手段,解决道路交通问题的根本措施以及获得交通运输最佳效益的有效方法。   交通规划的进步离不开信息技术的推动,近年来GIS技术正逐渐应用到交通规划中来,并发挥出日益重要的作用。   业务特点   交通规划具有自己独特的业务特点,这些特点决定了GIS工具在为交通规划工作服务时,要能够适应这些特点的要求。   首先,要进行快速检索。规划人员要在短时间内快速获取大量信息,需要借助一定的工具进行快速检索。   其次,跳跃性的数据处理。如同尿布和啤酒的故事中,男人买尿布的时候也顺带买一打啤酒,通常,规划人员在对大量来源不同、属性不同的数据进行处理时,需要进行相关性分析,以发掘其中隐藏的关系和规律。   第三、深入应用辅助决策模型。 在规划工作中有大量评价、预测性的模型,从模型结构上来说,系统里面有两种模型:一是基于GIS的模型;二是基于MS的模型,其结果仍需利用GIS进行展示。   第四、便于携带的任意裁减。 规划人员不仅在固定的场所办公,也有移动办公、在现场实地工作的需要。而由于规划设计院一般实行内外网隔离,不可以通过互联网进行传输的要求,因此,在移动办公时需要能够有将部分数据和图景带到现场,故要求系统便于携带的任意裁减。   最后,与相关软件的综合集成。 规划工作的结果需要以报告的形式展现出来,因此,为规划工作服务的GIS平台和软件也应该能与办公系统、以及其它管理系统进行无缝集成。   需解决的GIS问题   空间布局问题 既能够展示现有的空间布局状况,又能够表达规划人员对于未来空间布局的规划与预期。   网络计算问题 这属于优化布局的问题。即看某种规划方案是否合理,比如,从秦皇岛出发运输某种货物到达广州,在运输路径、运输工具、时间和经费等方面的选择上进行综合的网络计算,从而得出投入回报比最优的方案。   动态设置问题 交通状况不是一成不变的,要根据时刻变化的动态来进行数据更新,在此基础上再进行规划设计。   区域分析问题 交通不是一个孤立的存在,它与周围的经济、人口、自然环境等都会发生关联,所以进行区域分析是交通规划工作的要义之一。   时空历史变化的对照问题 瞬息万变的现实会导致大量的历史数据,如何存储历史数据,如何处理变化后的数据,如何更新数据,如何在历史数据和最新数据之间进行自由转换查询,这也是GIS平台要解决的任务之一。   GIS在交通规划中的典型应用   1.专题图制作   比如2005年分省GDP专题图,这是按照行政区划而进行展示的GDP分布示意图。   另外,可以利用动态分布来制作的国道技术等级分布图,即在不同的路段,建造技术处于何种水平,整个的分布状况如何;利用动态分布来表达交通量,比如珠江口国道交通量分布图;利用缓冲区分析来制作的106国道区域经济干线辐射能力示意图,目的是看范围内路线的选择是否合理;利用网络分析来看从产地到消费地什么样的运输方案才最优,比如制作的煤炭运输系统规划方案示意图等等。   2.地理数据的导入、导出   今天的GIS工具,已经可以自由实现地理数据的导入和导出。比如可以从系统中以行政区划或屏幕裁减的方式导出空间数据,带到工地现场进行办公,同样,也可以把外出办公后采集的数据导入到整个系统中去。   3.多媒体表达   GIS系统能够与OA等其他系统的兼容,从而能够满足规划报告的多媒体表达的需要。比如,它可以同时表达图形、文本、表格和视频信息。   GIS对于交通规划的意义   GIS是规划效率的发动机,也就是说GIS系统的使用提高了规划制作的效率。   GIS是规划成果质量的催化剂。GIS平台能够把所有的数据都整合在一起,提高了报告的质量。   GIS是规划数据标准化的强有力工具。在没有使用GIS工具和平台前的手工作业时代,各种数据都分散在不同的规划人员手中,难以保证数据的标准化,而使用GIS工具和平台后,所有的规划人员都是从同一个平台上调用数据,从而能够保证数据的标准化。   最后,GIS是规划数据和成果的共享平台。通过GIS平台,不仅可以方便地调用数据,还能够可以看到所有的文本信息,展示规划的成果。   总之,通过引入GIS技术,提高了交通规划业务工作的效率,简化了业务流程

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
91
 楼主| 发表于 2006-12-21 21:38:55 | 只看该作者

[国外GIS教育调查]我在英国、荷兰学GIS

[编者语]不知从哪年开始,留学成了潮流,“出国镀金”成了时尚、“海龟派”成了人人羡慕的一族。如今,随着就业压力的升温,面临毕业的学子除了考研之外,纷纷选择了出国留学这条路。GIS作为一门较新的专业,国外的学习情况如何,相信是众多有出国打算的考生十分想了解的问题。因此,本期我们选择了“我在国外学GIS”这样一个独特的试点向大家介绍国外GIS的学习情况。由于受各方面条件的限制,像美国、加拿大等GIS发展比较成熟的国家不能一一介绍到,既便介绍到的国家也不能尽善尽美,希望读者能够给与谅解…… (发起/整理:骆驼人) 英国是一个老牌的资本主义国家,各种设备都很陈旧但是在学术研究方面却居世界领先水平。 英国大学的课程安排和国内大学基本相同,都是一年分2个学期,每个学期有多门课程,同时进行教学,学期期末的时候同时进行考核。与中国大学所不同的是,英国的大学在本科一入学时就需要根据不同的专业选择课程,基础课程是在预科的时候进行的。中国留学生到英国进行学习一般都要参加预科的学习。 我所就读的英国利兹大学更侧重于专业的研究,重理论,而实践很少。研究生的学习更是和中国的研究生不同,英国的研究生学习主要分为2类,一种是研究型,学生不参加什么课程。在开学的时候,学生可以侧重自己的需要选择几门,但大部分时间都是在办公室或研究室进行研究,这种学习和国内的研究生学习所花的时间差不多,大概需要2年半;另一种研究生的学习可以说是全球所用时间最短的,只需一年的学习,学生主要以上课为主,有点像国内的大学生活,但是课程相对少了很多,最后花上3个月的时间完成论文。论文的要求也是根据专业的差别而有所不同。 GIS专业的研究生学习,很苦,很累。老师根本就不教什么基本的内容,也没有教科书,主要是将幻灯和讲义发给学生。每上一节课的时候,老师都会给出很多参考书目,然后由学生自己准备参考书。由于每节课的内容需要涉及不同的章节,因此就需要不同的参考书,往往一门课下来,所涉及的参考书能有将近10本左右。一般每个学期都有4门课程,每周将近有22个学时,除了正常的上课还要上机练习软件操作,完成上机的作业。有些课程的评估是根据5个上机作业完成,另外有些课程的评估是由短文或短文和考试共同组成。短文有点像论文,就是字数相对较少,老师给出几个题目,由学生根据自己的兴趣进行选择。选题确定后需要大量阅读参考书,对选题进行描述,评论。每篇短文大都在5000字左右,参考书目要求在10个以上。考试也与其他的课程不同,主要由论述老师给出5个题目,然后学生任意选择2个在2小时内闭卷完成。成绩的划分也是不同的,在GIS 专业,及格成绩是31%~44%,通过是44%~47%,50%~69%就是好的成绩, 70%就是优秀,基本上没有人能拿到这个分数。由于英国属于没落的国家,任何设施都要学生自己花钱,甚至复印、打印都要买卡。 与英国的教育体系不同,在荷兰的学习相对来说比较舒适。与英国的利兹大学不同,荷兰的ITC是一个只有研究生学习的学院。在那里学习,同学都是来自全球各地,住在学校统一的宿舍,同学之间也比较熟悉。而在英国,学生主要以英国本地人为主,有少许几个其他国家的学生。尽管荷兰的学习也是比较累的,但是在荷兰ITC的教学比较集中,3个星期主要集中对一门课程的学习,然后进行考核,再开始下一门课的学习,所以相对感觉轻松了许多。考核的方式都是以考试为主,出题形式也比较灵活。成绩和国内的一样,但是上了70分的就已经是极少数的了!由于荷兰是高福利国家,在ITC给学生的设施很好,学生可以花很少的钱住到很好的房子,但是在英国是根本无法想象的事情,而且学生只需花复印的钱,打印都是免费的。荷兰ITC的研究生需要花1年半的时间,1年的时间学习,参加课程,半年的时间学论文,这相对于英国的论文写作就轻松了许多。 作者简介: 杨若肖 (Luna B. Yang), 2001年毕业于北京联合大学应用电子专业, 2002年毕业于荷兰ITC国际航天测量与地球学学院地理信息系统专业,2004年获得英国利兹大学地理信息系统硕士学位。2004年10月至今任职于北京超图地理信息技术有限公司。

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
92
 楼主| 发表于 2006-12-21 21:39:37 | 只看该作者

[国外GIS教育调查]浅谈日本GIS的教育情况

虽然,目前在日本越来越多的系统和产品涉及到了GIS技术,但是普通老百姓对GIS的了解却很少。别说不理解GIS,很多人连GIS这个词也没听过。比如说,当我向别人介绍自己所从事的行业时,往往对方回答 “GIS…?是不是汽车导航系统的那个?”,而他说的是GPS。对于GPS,大家已经比较熟悉,因为常常被媒体所宣传和介绍,并且有手机、导航系统等大众化的应用产品,使用目的也很明显,让人容易理解。而对于GIS,大家就比较模糊。造成这个情况的原因之一,可以这么说,在日本没有完备GIS教育。也可以说与中国、欧美等国家相比,日本的GIS学习环境比较落后。 其实,在日本国内至今还没有一所大学开设专门的GIS系或专业,(在中国不少大学有地理信息系统专业,这件事让我非常吃惊。)只有地理专业或者信息系统专业等下面才有“地理信息系统研究室”这样的部门。在日本,GIS与其说是个计算机的范围,不如说是个为了研究的工具。就是主要把它当作一个工具,研究利用这个工具怎样来应用于社会。 而且,并不是每个上述相关专业都拥有这种GIS研究室。只有当该专业有专门的GIS老师时,才会设立一个GIS研究室,开设有关GIS的课程。因此,在日本学习GIS的机会和学校不算太多。如果留学日本想学GIS,考大学的时候先要好好调查,在哪所大学有GIS的研究室或GIS的老师,要不然,也许进入地理专业也找不到学GIS的机会。但是我认为,以学GIS为目标而选择大学的考生不多,因为他们还考虑不到GIS这个专门领域。如果大学里有GIS专业的话,让考生意识到GIS的存在,给予选择的机会,也是很不错的事情。 1995年1月,日本神户发生了令世界震惊的地震灾害事件(约6千人死亡)。当时为了避免第二次事故的发生,当地政府部门需要迅速而且正确地掌握震灾情况。就在这时,日本有关专家协助当地政府把GIS引入了灾害处理中并取得了相当大的成功 。虽然这是一场灾难,但依此为契机,让日本社会认识到了GIS的重要性。后来,地方政府逐渐采用GIS,称为“统合型GIS”(政府内部部门之间,将地图数据在局域网内共享)。同时,还逐渐形成了重视GIS教育(包括从培养专家到启发大众)的趋势。1998年,东京大学空间情报科学研究中心成立,它以空间情报科学的普及,整顿所有研究使用的空间数据基础以及推动“产(企业),官(政府),学(学府)”这三者共同的发展为目的。 通过这样的研究所及相关机关的推动,GIS在日本社会的影响力逐渐得到了提高。将来,也许日本大学也将开设独立的“地理信息系统(或科学)系”。那时,或许日本GIS的教育情况会发生变化,将以“怎么做好系统,怎么做好软件”为重。但我个人以为,无论如何,GIS和地理学有着密不可分的关系,不能只GIS独自发展下去吧。 作者介绍: Nakano Makoto(中野诚),1997年毕业于日本立命馆大学文学系地理专业,1998年在日本朝日亚洲公司(日本摄影测量领域旗舰企业航测株式会社的子公司)任职,后进入日本超图株式会社工作,2003年2月成为日本超图株式会社派驻北京超图地理信息技术有限公司的首批日籍工程师,负责SuperMap软件日文化工作。

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
93
 楼主| 发表于 2006-12-21 21:41:58 | 只看该作者

基于SuperMap的日本大型铁道GIS的设计与实现

1、引言 日本是一个铁路交通非常发达的国家,轻轨电车、地铁、新干线遍布各处,纵横交错,把城市和乡村连成一体。为了维护交通的日常运行,及更加有效地管理各种铁路设施,日本最大的铁路公司JR东日本集团决定开发一系列铁道GIS。本系统是其中的一个基础系统,用于统一管理遍布日本全国的铁路设施,开发成功后将为JR东日本集团的指挥调度室及集团子公司使用。系统不仅数据量巨大,而且质量和性能要求非常严格。只有从功能、界面、数据、性能等各方面均满足要求,才能投入到实际工作中使用。 2、系统结构   根据要求,JR铁路GIS系统主要用作Internet/Intranet网络发布,系统将在服务器安装大型数据库客户端提供浏览器界面即可直接访问。本系统根据用户网络带宽的不同,提供了两种网络结构及对应的两个版本,以适应不同条件的用户。使得用户可在公司内外任何地方,通过Login帐号和密码控制都能访问该系统。一种为B/S结构(基于SuperMap IS 2003模板的版本,简称IS版),它主要用于发布数据和地图。适用于外部因特网和内部局域网,在网络带宽较小的情况下更能体现其优越性。另一种为C/S机构(基于SuperMap Objects 2003包装的OCX版本,简称OCX版本),适用于网络带宽较大的内部局域网,可以用它浏览和编辑地图。两种网络结构集成在一起运行,共用同一个数据库。   IS版本的系统结构简图如下。以MS IISSuperMap IS作为引擎,响应客户端请求并访问后台Oracle数据库。该结构能够穿透防火墙,适用于外部因特网和局域网。
1 IS版本的系统结构简图
  OCX版本的系统结构简图如下。该版本通过VB利用SuperMap Objects 2003包装一个铁道GIS控件。该控件运行在客户端浏览器,通过局域网、专线网或虚拟专网(VPN)来直接访问服务器端Oracle数据库。
2 OCX版本的系统结构简图
3、系统功能和界面   IS版和OCX版共有的功能:地图显示(放大、缩小、漫游、点选、前一视图、后一视图打印地图等),旗上标注,检索(设施、里程和住所)、距离和面积量测、地图旋转、索引图、用户访问统计、数据编辑、系统管理(用户管理和系统日志部分)。   OCX版因为要用于内部管理,故功能设计得更多一些,其独有的功能有:地图连续自动漫游、比例尺设定、系统管理(地图更新和地图操作统计部分)、缓冲区分析、拷贝地图、排版打印等。
3 设施检索和IS版本的地图编辑界面
 
4 IS版本系统总界面及矢量地图的显示
 
5 OCX版本系统总界面及影像地图的显示
 
6 旗上标注显示、里程检索和住所检索功能的界面
 
7 用户管理、用户信息编辑和地图更新功能的界面
 
8 用户登录日志管理功能的界面
4、地图和数据库设计 4.1 数据整理   系统中的数据分为四部分:BMP影像、铁道设施矢量数据、市街地图矢量数据、及用于提高系统查询速度和进行用户管理的辅助数据部分。   数据的结构规律是以24条首都圈铁路和3条新干线为脉络,沿线分布了航空影像和市街地图类的数据。24条首都圈铁路全部属于日本坐标系第9系(简称9系,以下类似),上越新干线跨越8系和9系,而东北新干线从首都圈出发,跨越9系和10系,山形新干线全线在10系境内。   从内容上看,系统数据以四类形式存在。   1)铁道设施数据:铁道设施数据对用户虽然很重要,但数据量少,没有太多需要考虑的地方,只要能够跟其它三种数据协调工作就可以了。   2)市街地图数据:相较之下,市街地图数据比较复杂,原始矢量数据有440个图层,每个图层的边界范围都是同一区域。另外,首都圈市街地图中各图层含有的对象数极为不均匀。最小的只有7个对象,最大的达到5,000,000个对象,中间有几个20万左右的,及一个178万左右的。根据一般原则,一个地图中的层数过多和过少,都会导致显示及查询效率降低。因此,数据在进库时要进行适当的分割和合并,重新组织和调整。   3)影像数据:这类数据的特点是量大,总量达到167GB,分属于三个不同的坐标系。数据量大时首先需要大容量磁盘,同时需要较高的访问速度。   4)辅助数据:这类数据存在的目的是辅助提高系统性能,方便系统开发,同时也包含一部分全局性的数据,用于满足一些全局性的功能,如系统管理、住所检索等。这类数据的很多内容都需要根据原始数据通过编程二次生成。
文件格式 数据内容 文件数和总尺寸 备注
铁道设施 SHP 1)首都圈(含有东北新干线) 13个文件,20.9MB 首都圈全部范围属于9系,上越新干线跨越8系和9系,东北新干线跨越910
2)新干线9系(含有上越和东北新干线) 16个文件,8.37MB
3)新干线8系(含有上越新干线) 9个文件,3.02MB
4)新干线10系(含有山形和东北新干线) 18个文件,7.40MB
市街地图 DWG 1)首都圈(含有东北新干线) 213个文件,1.81GB
2)新干线9系(含有上越和东北新干线) 54个文件,411MB
3)新干线8系(含有上越新干线) 19个文件,115MB
4)新干线10系(含有山形和东北新干线) 43个文件,286MB
航空影像 24BMP+TFW 1) 首都圈 7282个文件,72GB
2)新干线9系(含有上越和东北新干线) 3917个文件,56.8GB
3)新干线8系(含有上越新干线) 1181个文件,13.1GB
4)新干线10系(含有山形和东北新干线) 3453个文件,38.5GB
辅助数据 属性数据 经纬度数据,中间临时数据,系统管理数据 该数据源定义为经纬坐标系,纯属性数据(坐标数据也作为属性数据存储)
 
9 本系统数据所在坐标系范围的概略图
4.2 数据组织和处理   GIS系统开发中,数据组织、数据处理以及地图制图是紧密相关的,它们都服务于一个中心目标——系统的高效运转,并且都要基于具体基础软件(本系统中是SuperMap)的特点来实施。数据组织这个步骤并不仅仅是其本身,而且也贯穿于数据处理和地图制图阶段中,同时它也是数据库设计和系统设计的核心组成部分。因此,几大步骤往往相互交融,必须在系统设计的框架下进行前后关联考虑。   本系统中地图数据组织的目标是,通过合理控制地图尺寸和图层数,尽可能地发挥SuperMap 基础软件的技术特点,以达到最佳的显示浏览效果。既要追求地图浏览速度,同时也要保证地图图象的内容、质量和美感,为用户提供实用和高质量的地理信息服务。   原始数据文件多、种类杂、数据量也大、处理起来费时费力。按照常规的全手工处理方式,效率将会很低,需要采取手工加自动化的方式进行处理。下面分几个步骤进行简单介绍。 4.2.1 数据源、Oracle表空间及数据文件   由于系统地域跨越日本坐标系的8系、9系和10系三个不同的部分,SuperMap的坐标系信息存储在数据源中,同时为便于以后维护备份方便,能够并行访问多个磁盘/磁盘阵列甚至做到多机并行集群处理(若条件允许)提高速度。因此总体上将空间信息分成3个数据源,一个数据源存储一个系的数据,8系、9系和10系三个数据源的数据量极不均衡,其中以9系(含首都圈)最大。   为管理系统方便,把帐号、日志等一些系统维护信息放在一个单独的数据源中,同时把系统功能实现时需要的一些中间表放在这个数据源中。另外,横跨8910系的初始地图需要做成地理坐标系地图,住所数据也是如此,因而创建时给该数据赋予地理坐标系投影信息。总体来说, 该数据源作为一个公共数据源存放一些具有全局性和中间性的信息。   这样,系统一共有四个数据源。在Oracle中实施时,为便于以后维护备份方便,同时能够并行访问多个磁盘,提高速度,也分别建了四个表空间,每个表空间存储一个数据源的数据。   同时根据SuperMap SDX+ for Oracle 引擎技术对矢量和影像数据存储的特点创建数据源,详细情况举例如下表。
数据源名称
表空间
数据文件名
尺寸
用户
密码
备注
JRGISDS8 JRGISTSP8 JRGISTSP8.dbf 2GB JRGISU8
******
8系数据源
JRGISDS9 JRGISTSP9 JRGISTSP9.dbf 12GB JRGISU9
******
9系数据源
JRGISDS10 JRGISTSP10 JRGISTSP10.dbf 5GB JRGISU10
******
10系数据源
JRGISCMNDS JRGISTSPCMN JRGISTSPCMN.dbf 1GB JRGISUCMN
******
公共数据源
4.2.2 数据集
1)铁道设施数据集   铁道数据集数据量小,一种类型一个SHP文件,导进来后可以直接作为一个数据集存在,首都圈和新干线9系的铁道数据都属于9系,因此可以把同类数据集合并。
2)市街地图数据集   对大数据的管理和读写能力,关键取决于数据库引擎的管理能力和存取速度,以及是否能够在数据组织中根据实际情况对其进行灵活有效地运用。   对于这部分矢量数据,从两个方面进行考虑。一个是横向上的区域分割与合并,另一个是纵向上的图层分解与合并。   在横向区域方面,由于对象多的图层只在大比例尺下显示,加之SuperMap本身良好的空间索引技术,即便对于大数据集,系统也能进行快速的显示。由于原始数据DWG文件众多,达到二、三百个,实际处理时,我们根据数据的特点对同类型图层在导入时进行了合并处理。   在纵向图层方面,以首都圈为例,导入进来后,图层数约为290个。再通过把多个同类和只在极小类别上有差异的小数据集(对象少)合并成一个较大数据集的方式,进行两次合并处理,首都圈范围内的市街地图图层数最后变为24个。这样,就为后面控制总图层数的前提下,在一个地图中加入其它图层留下了较大的弹性空间。不过,合并后由于一个图层包含了多种地物信息,在地图信息详细程度不能缺少的前提下,制图时必须启用专题图来表达。SuperMap带有的7种专题图功能能够满足这方面的要求。
3)航空影像数据集   如前所述,航空影像文件数大约有15000多个,数据处理的工作量很大。按照一般的处理方法,是先把众多的小BMP影像导入SuperMapSDB文件,进行合并。合并之后,再利用SuperMap的压缩技术存入Oracle数据库。其简要流程如下:
BMP文件 --> SuperMapImage数据集 --> 合并 --> 压缩导入Oracle数据库   上述方法的缺点是耗时长,尤其在压缩和合并阶段,中间过程需要人工干预,这样处理效率较为低下,而且容易出错。为了加快处理速度和避免出错,SuperMap专门提供了处理影像数据的工具,用于将上述处理流程尽可能一体化和自动化,直接由BMP压缩导入Oracle数据库。实施结果表明,作业时间比一般流程的作业时间减少了2/3,而且基本不出错。   导入之前,应事先设计好哪些BMP文件合并成一个SuperMapImage数据集,同时指定压缩比率。在压缩比率上,SuperMap具有较为宽松的选择范围,在0.05—0.95之间都能得到良好的压缩质量。针对本系统数据,综合考虑质量、尺寸/图层数、速度等因素,最终把影像数据集的标准尺寸定为5GB,压缩比率定为0.07   通过在Oracle数据库中压缩存储,原来167GB的影像数据尺寸变为大约11GB,大大节约了磁盘空间,也为后期成果备份和数据迁移提供了良好的基础。同时,对压缩在Oracle中任意范围的影像数据,进行放大、缩小、自由缩放、全幅显示等操作非常流畅,影像旋转也很快。对9系范围内将近129GB的影像进行操作,效果几乎与几十MB的影像没有什么差别,完全令人感觉不到正在操作一个大数据。
4)公共数据集   第四类数据集是公共数据集,全部保存在公共数据源里。按照用途可以分为五类:   1)铁路线代码及名称、设施类型及名称、设施实际数据、车站实际数据;   这类数据用于系统快速查询和地图快速定位,比如当用户从线路组合框中选择了某一线路,该线路上所有车站都应被自动加在车站组合框中,而这个步骤是通过车站表完成的。车站表中同时含有地图名称和明码坐标数据,可以直接取出,以提高车站在地图上的定位速度。   2)住所数据;   住所数据分三个表,详细程度到番地,再下级就是门牌号。为了支持快速查询,我们在系统中建了两级索引。住所数据是点类型的数据, 其坐标信息是经纬度的, 为查询后定位方便, 入库时进行了投影转换处理, 并增加一个字段存放住所所属地图名,增加另外两个字段存放转换得到的直角坐标信息(XY值)。   3)系统管理数据;   系统管理数据,例如用户名、ID、登录信息、个人操作的内容、修改的几何对象等。   4)初始地图数据集;   初始地图是范围覆盖日本全境的地图,数据集跨越日本的很多坐标系,因此该类数据以地理坐标系形式存在。主要包括日本行政区域、矢量数据范围网格和全境铁路信息。   5)中间数据;   此类数据是为实现某些系统功能、方便系统编程临时存在的数据。比如旗上标注的旋转,因为标注对象的主线和文字都是水平的,当旋转地图时,用户希望线和文字仍然保持水平。因此,必须能够单独处理和控制标注层(控制包括增删对象、旋转对象、显示与非显示图层等),而不管该图层是否已经打开和显示,这要求GIS基础软件平台能够提供灵活丰富的接口。顺便指出,这里已经深入到系统详细设计阶段,这也说明了数据组织和系统设计之间具有紧密的内在联系,不可分割。
4.2.3数据库结构描述   数据库是对地图显示需要用到数据的物理记录,其所保存的是实际的数据。地图中显示的图层是直接调用数据库中数据集得到的结果。限于篇幅,这里只对数据集分布情况作一大体说明。
1ENT开头,全幅显示时可见的数据集;
2MESHCODE开头,地图范围网格编码数据集系列;
3MESHLINE开头,地图范围网格线数据集系列;
4T8开头,8系铁路设施数据集系列;
5T9开头,9系铁路设施数据集系列;
6T10开头,10系铁路设施数据集系列;
7TXBTXT开头,图面属性数据集;
8USEREDITCAD开头,用户编辑如增加几何对象时系统在Oracle数据库中为用户自动保存的数据集;
9SHICAD开头,旗上标注CAD数据集,该数据集中的对象通过程序自动生成,用户修改旗上标注之前,系统会为用户在SHICAD中选中的旗上标注对象上,拷贝生成一个形状和中心位置将要改变的新对象,并保存在用户公共数据集USEREDITCAD中。同时,通过在USEREDITCAD中用一个属性字段标识这个派生对象属于哪个用户,以便该用户下次打开旗上图层时仍能看到自己上次编辑的结果。所有用户在同一数据源中拖动生成的新对象都保留在这个数据集中,但显示时通过过滤条件只显示属于这个用户的对象;同时也通过过滤条件控制SHICAD图层中的原始对象不显示。
10ROTATESHICAD,用户旋转地图时,旗上标注层也跟着旋转,但是用户要求旗上标注对象中的主线条和文字要始终保持水平。因此,设置一个临时图层专门用于实现这一要求。具体实现时,用地图窗口范围在SHICAD数据集中查询出当前窗口要显示的旗上标注对象,将这些结果对象围绕对象的基点反转地图的旋转角度,之后存入ROTATESHICAD临时数据集中,最后显示该数据集。注意,每次刷新地图之前(而不是保存对象之前,因为多个旗上标注图层的对象都保存在这个数据集中)都要清空临时数据集。
11stk开头,范围在首都圈地图里的某数据集;
12SK开头,范围在新干线(SK8SK9SK10)地图里的某数据集;
13jeSKR开头,上月新干线影像数据集系列;
14ymgtSKR开头,山形新干线影像数据集系列;
15thkSKR开头,东北新干线影像数据集系列;
16stk23R开头,首都圈23区影像数据集系列;
17stktbstR开头,首都圈其它区影像数据集系列;
18stktmsmR开头,首都圈其它区影像数据集系列;
19Int开头,初始地图里面的数据集系列;
20)其它,没有说明的数据集,为市街地图数据集系列。注意,8系和10系数据源里每种数据集只有1个,例如对于C_GNAME2数据集,名字都是C_GNAME2,使用时以数据源名区分。但在9系数据集里面每种数据集有2个,故冠以不同的名字区分,例如对于名字为C_GNAME2的数据集,在9系首都圈里为stkC_GNAME2,在9系新干线里为SKC_GNAME2 4.2.4 制图设计   首先设计地图的整体结构。本系统使用1个工作空间,包含5个地图,情况如下。 1 初始地图,系统没有选择任何线路和站点时的地图,整个系统共用此一个地图,名称为InitMap 2 四个主干地图 1) 9系首都圈地图,名称为stkMap 2) 9系新干线地图,名称为SK9keiMap 3) 10系地图,名称为SK10keiMap 4) 8系地图,名称为SK8keiMap   其中,9系区域数据过于庞大,而且原始数据结构不尽相同,为避免地图内图层过多和图层内对象过多的情况出现,我们根据数据特点将9系区域分成两个地图,较为均衡地分配了查询显示需要消耗的计算资源。在索引图方面,四个主干地图分别对应四个索引地图。索引图的目的是方便用户了解整体地图的基本信息,图中需要显示的是一些主要要素的整体范围和基本轮廓信息,因此本系统在四个主干地图的基础上,采用比例尺控制图层的方式得到索引地图希望表示的信息。具体实施时可以直接利用主干地图的全幅显示功能得到索引图,不单独制作索引地图。   所有数据源和地图采用统一的连接名,名称举例如下。   连接名:jrgisservice   工作空间名: JRGISBaseMap.smw   其次设计地图的内容。高质量的地图不仅要求信息丰富,缩放平滑流畅,而且要求显示速度快,图面美观,符号形象生动。   图层设置。地图内所有图层按照种类分成9个组,由上至下列举为: 范围图层组,图面属性图层组,旗上图层组,铁道基本情报图层组,铁道敷图层组,市街地图图层组,全体表示图层组,航空写真图层组。   图层比例尺。根据图层数据的实际比例尺以及地图的显示内容对各图层设置比例尺范围。   地图的其他基本设置,这里不再赘述。   最后考虑坐标系接合部的处理。因为系统地域跨越不同的坐标系,当漫游地图的时候,如果地图窗口的中心已经离开当前地图范围,系统应自动判断调入相应地图并以当前比例尺显示。为保证地图切换时,地图显示能够流畅地过渡,两个地图在相邻边界处应该有同样的数据,即接合部地区的数据在两个地图中应同时存在。一般情况下,原始数据往往是接合部地区的数据只在其中一个地图里含有,此时应从有数据的地图中裁减出部分数据经投影转换后加入到另一个地图中。例如,9系地图北边的福岛地区的数据就是从10系地图的南边裁减出来经投影变换后得到的。 5、结束语   目前开发的是系统第一期工程,其中的数据主要以首都圈为主,后期工程将处理范围更大的数据。第一期工程数据总量约为170GB左右,以SuperMap作为引擎,存储到Oracle数据库中以后,所占服务器硬盘空间为14.2GB,矢栅数据的总体压缩率约为92%。系统服务端部署到一台试验发布服务器(CPU为奔腾1GB、内存为2GB、硬盘为SCSI硬盘)和另一台开发服务器(CPUXeon(TM)2.4GB、内存为1GB、硬盘为IDE硬盘)后,在公司内外多台客户机上进行测试。结果表明,在任意比例尺下任意地区范围内,地图刷新时间一般在2秒以下,极个别条件下(如网络繁忙)会出现3秒钟的情况。最后迁移到JR东日本集团实际工作的服务器上以后,速度更为理想,能够较好地满足JR东日本集团庞大铁路系统管理的业务需要。

3

积分

56

金钱

5

帖子

小小水师

94
发表于 2006-12-22 09:01:58 | 只看该作者
理念重要啊!

3

积分

56

金钱

5

帖子

小小水师

95
发表于 2006-12-22 09:03:51 | 只看该作者
e文好难看懂!

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
96
 楼主| 发表于 2006-12-22 16:10:36 | 只看该作者

GIS网络资源[收集整理]

Go2Map栅格地图
http://www.go2map.com/down/freemap/ 提供城市地图服务和APISohu
新浪爱问栅格地图
http://local.sina.com.cn/ 地图搜索服务Sina
Mapabc栅格地图
http://www.mapabc.com 地图搜索服务,提供地图名片
Mapbar栅格地图
http://www.mapbar.com 地图搜索服务,提供博客地图
我要地图栅格地图
http://www.51ditu.com 地图搜索服务
搜狗地图栅格地图
http://map.sogou.com/ Sohu收购Go2Map后推出的地图搜索服务Sohu
baidu栅格地图
http://map.baidu.comMapBar为baidu提供地图服务
开源WebGIS平台 向您介绍国际开源WebGIS项目,它们具有共同特点:免费使用,开放源代码(具体使用规则请参看各个平台的 Lisense文件),希望借此带您进入广阔的开源GIS世界。 采用Java开发的几个主要开源WEBGIS项目列表(由于时间有限,只选取部分)
平台当前版本生成日期项目地址授权协议支持格式和接口
ESRI ShapeMapinfo MID/MIFOracleMySQLPostGIS其他格式*2OGC*8 WMS*9 ServerOGC WFS*10 ServerOGC WCS*11 ServerMS .Net
Deegree2.02005-2-3http://deegree.sourceforge.netLGPLGML2.1.1√*4√*5√*6
OpenMap4.6.32006-2-1http://openmap.bbn.comOpenMap License√*1√*3 VPF RPF DTED √*7
GeoServer*141.32006-2-16http://docs.codehaus.org/display/GEOS/HomeGPL 2.0GML2.1.1 ArcSDE DB2 VPF√*9√*10
GeoTools2.1.12006-1-26http://www.geotools.orgLGPLGML2.1.1 ArcSDE
uDig*121.0.62005http://udig.refractions.net/confluence/display/UDIG/HomeLGPLGML2.1.1 ArcSDE DB2
mapbuilder-lib*131.0rc12005-12http://mapbuilder.sourceforge.net/LGPL GML
*1 仅支持点实体 *2 光栅格式JPEG, GIF, PNG, (Geo)TIFF, PNM , BMP没有列出 *3 需要单独的支持类 *4 兼容OGC WMS 1.1.1 *5 兼容OGC WFS 1.0.0 *6 兼容OGC WCS 1.0.0 *7 有限支持 *8 Open Geospatial Consortium(OGC) *9 Web Map Service (WMS) 基于Web的光栅和矢量图形服务 *10 Web Feature Service (WFS) 基于Web采用GML格式传输的矢量图形数据服务 *11 Web Coverage Service (WCS) 基于Web采用光栅格式传输的光栅图形数据服务 *12 采用Eclipse框架开发的桌面GIS软件 *13 基于AJAX模型的WEBGIS客户端软件,支持GeoServer, MapServer, quickWMS服务器 *14 基于J2EE架构的WEBGIS服务器,已测试JBoss, Jetty, Tomcat, Resin Deegree示例(读取、显示、格式转换 支持SHP、GML、数据库、WMS、WFS C/S)下载 程序包(V0.91) GML测试文件 OpenMap示例(中国铁路 B/S)网页浏览(非宽带用户请勿访问) 注: 以上示例需要安装Sun J2SE 1.4以上版本才能正常运行 采用C/C++开发的开放源代码的GIS平台列表(由于时间有限,只选取部分平台)
平台当前版本生成日期项目地址授权协议支持格式和接口开发语言
GRASS6.0.22006-2-22http://grass.itc.itGPLESRI E00, Shape, DXF, GPS-ASCII, USGS-DEM,IDRISI, OSS, MapInfo MIF,TIGER, RML Raster ARC/GRID, E00, GIF,TIF, PNG, ERDAS LANC
MapServer4.62005-6-14http://mapserver.gis.umn.edu/index.htmlMapServer LicenseESRI Shape, Mapinfo, PostGIS, ArcSDE (通过OGR*1支持) TIFF/GeoTIFF, EPPL7(通过GDAL*2支持)WMS (client/server), WFS (client/server)C
*1 OGR http://gdal.velocet.ca/projects/opengis 提供读取ESRI Shape, Mapinfo mid/mif and TAB的C++库,属于GDAL项目的子集 *2 GDAL http://www.gdal.org/index.html C/C++编写的光栅地理数据格式转换库

1万

积分

5860

金钱

4894

帖子

铂金水师

QQ
97
 楼主| 发表于 2006-12-23 17:13:03 | 只看该作者

北京超图力推GIS国际化

在北京超图地理信息技术有限公司近日举办的“研发中心媒体开放日”活动中,该公司总裁宋关福博士表示,超图公司立足技术创新研制出具有自主知识产权的地理信息系统软件平台SuperMap已成为国内的主流GIS平台,被广泛应用于国土、交通、民航、房地产、电信等领域,同时SuperMap已被10余家世界500强企业选用。 据介绍,超图公司在土地信息系统、军事地理信息系统、数字城市、商业地理信息系统、资源环境遥感监测和GPS车辆导航系统等专业应用领域积累了丰富经验。该公司历经4年时间研制出新一代全组件式GIS软件平台SuperMap,并以此为基础开发了一系列专业和行业GIS软件产品。目前,该公司已在日本和我国香港地区设立分公司,其SuperMapGIS已进入日本、韩国、美国、法国、澳大利亚等国和我国台湾、香港、澳门地区市场,实现了中国CIS软件国际化。

5223

积分

2459

金钱

1292

帖子

黄金水师

CEO

98
发表于 2006-12-24 12:39:28 | 只看该作者
国产技术,支持!

12万

积分

2万

金钱

3万

帖子

论坛顾问

2016十年风雨同舟2012年度“十大风云人物”勋章财富勋章教书育人勋章无所不知勋章十大风云人物2011年度十大风云人物勋章季度优秀版主勋章

QQ
99
发表于 2006-12-24 22:31:25 | 只看该作者

GIS技术在洪水风险管理系统开发中的应用

GIS技术在洪水风险管理系统开发中的应用
李娜 刘树坤
(水利部防洪抗旱减灾工程技术研究中心)
摘要:洪水灾害风险管理是指人们对可能遇到的洪水风险进行识别、估计和评价,并在此基础上综合利用法律、行政、经济、技术、教育与工程手段,合理调整人与自然之间的关系,实现人类的最大安全保障和可持续发展的双重目标。洪水灾害的风险管理应贯穿洪水灾害发生发展的全过程,主要包括建立风险管理目标、进行风险识别、风险估计和风险评价、建立洪水灾害风险管理方案、进行洪水灾害风险决策、建立洪水灾害风险管理计划并进行洪水灾害风险管理效果的评价等基本步骤。应用型GIS主要有三种开发方式:独立开发、单纯二次开发和集成二次开发。由于独立开发难度太大,单纯二次开发受GIS工具提供的编程语言的限制差强人意,因此结合GIS工具软件与当今可视化开发语言的集成二次开发方式就成为GIS应用开发的主流。作者利用组件式GIS工具,并结合洪水风险管理系统的特点,以黄河下游山东段堤防溃决洪水风险管理系统为例,论述了GIS技术在洪水风险管理系统开发中的应用。 关键词:洪水风险,洪水风险管理系统,GIS,组件式GIS,黄河下游山东段,堤防溃决洪水风险 [ 本帖最后由 cygyc-gc 于 2006-12-24 22:32 编辑 ]

GIS技术在洪水风险管理系统开发中的应用20060407165301601291653680.doc

227.5 KB, 下载次数: 7

干啥别灌水!磕碜啊。
污水处理毕业设计论文在线求助与答疑
论坛已有资料,请自己下载,不接受pm索取。

60

积分

106

金钱

20

帖子

初级水师

100
发表于 2006-12-25 16:01:10 | 只看该作者
国产的是个好东西,但以后不要广告味太浓!!
您需要登录后才可以回帖 登录 | 注册   扫一扫,用微信登录

本版积分规则

联系管理员|手机版|小黑屋|水世界-水处理技术社区(论坛) ( 京ICP备12048982号-4

GMT+8, 2025-5-2 00:45 , Processed in 0.394157 second(s), 62 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表