您的位置:首页 >> 行业分析 >> 市场调研 >> 

水回收再利用研究发展现况之回顾与评析

时间:2007-05-30 来源: 作者:

(4) 薄膜程序:Ismail et al.,2004)以NF单元,处理含有高NaCl及染料、色度浓度之染整废水,处理水经回收后可再进入制程中被使用,估计两年内可回收单元设置及操作成本;Frank et al.,2002)以二阶段NF去除染整工业废水中98%之色度,使水回收率达90%;而Tang and Chen2002)同样以NF处理染整废水中电解质及色度,水回收率可达99%。由于制革工业之制程中使用大量化学药品,故制程废水即使经过二级处理,出流水仍含有大量之TDS及有机物,无法以传统之处理程序处理。Suthanthararajan et al.,2004)使用RO单元,去除98 TDS,回收率提升为78%,若将NF结合RO单元,除可提升回收率外,亦可延长薄膜寿命以及增加渗流量。Low et al.,2003)指出,以传统混凝及沈淀处理电视映像管制程废水,有高成本及大量污泥产生之缺点,若改以薄膜程序处理,则浓缩液中的碳微粒可在回收应用于制程中,处理水亦可再被使用。Noronha et al.,2002)结合MBR可去除有机物,及NF可移除无机物之优点,辅以UV消毒,可使果汁工业制程废水回收作为冷却或锅炉用水。而乳制品产业废水,因其含有部分牛乳,故水中COD增加,使用RONF需再结合其它单元,才能使处理水符合再利用标准(Béatrice, 2002)。在Miyagi and Nakajima2002)的研究中,利用UF处理含矿油及非离子性界面活性剂(APE)之乳化废水,结果显示,UF薄膜系统可去除97%矿油及90APEMutlu et al.,2002)使用0.8μm MF结合400DaNF,处理含有大量BOD4000 mg/L COD11000 Pt-Co色度之面包发酵工业废水,实验结果可使废水色度去除率达到89%,而COD去除率则为72%。Karabelas et al.,2001)考虑技术及经济条件,选用RO作为处理肥料工业废水之主要单元,浓缩液中所含之化学物可回收再利用于制程中,而处理水可作为冷却水水源。Alan et al.,2000)利用UF-RO程序处理中水及雨水,处理水经消毒单元后可做为厕所冲洗水,其中中水由于含较多有机物质,故进入薄膜组合程序前,需先经生物滤床进行前处理。Otaki et al.,1998)以河川水为处理对象,认为UF系统对E. Coli的去除率可达100%;而Bian et al.,1999)发现,单独利用UF处理河川水,并无法有效去除水中腐植质,若配合预混凝程序,则去除率可达80%,或利用MF配合活性碳吸附,可增进腐植质之去除效率。黄信仁等人(2001)发现,经适当前处理后,以不同操作压力进行UF操作,能使半导体业之化学机械研磨废水浊度,降至0.5 NTU以下,所得之澄清液,可回收利用于非制程系统,甚至进入纯水系统进一步纯化再利用。江万豪等人(2001)以UF薄膜结合混凝前处理,回收CMP废水。结果显示,混凝的确可增进浊度、TOC的去除率,采用薄膜分离技术回收CMP废水,适当的混凝前处理不但增加废水回收效率、延长薄膜操作滤程,且省下沉淀池的用地。在Chen and Chen2004)研究中,以MBR结合RO程序处理液晶显示器工业废水,COD去除率可达97%、TOC98%,BOD则为99%,处理之回收水可作为冷却水或其它功能用水。黄益助等人(2001)利用混凝沉淀作为实验前处理,再配合逆渗透分离的技术来净化经二级处理之放流水,评估薄膜技术应用在水回收再利用具有可行性。

(5) 其它:Rubio et al.,2002)利用浮除法去除矿场、冶金工业废水中所含之污染物、粉末颗粒、金属离子油脂、有机物及少量有价金属,发现具有低污泥量且高分离效果。Al-Jamal et al.,2002)以人工湿地去除废水中所含之污染物,并将处理水应用于灌溉,可回收营养盐、有机物做为植物生长之用,并维持水源涵养量,以此系统模式可处理都市污水。人工湿地可应用于去除水产养殖废水中所含之营养盐,可使总氮去除达95-98%,总磷为32-71%,使养殖用水循环再利用(Lin et al., 2002)。单以人工湿地处理工业废水,则因水质特性,处理效果有限,可于添加生活污水提供湿地生态系统发展之所需,促进处理效率(林欣怡及杨磊,2000)。而人工湿地亦可取代传统处理方式处理垃圾渗出水(蔡凯元及杨磊,2003)。

事实上,各废水处理技术,在操作上皆有其瓶颈,且在水回收再利用之应用上,受限于原水水质及回收水质需求,表3整理各再生水源应用于不同回收用途之适用处理技术。都市污水中污染物多为有机物、致病菌,以及氮磷等营养盐,多以生物处理配合消毒单元,使回收水可做农业灌溉及厕所冲洗水等用途;厌氧消化法,可处理高浓度有机物废水,适用于处理畜牧废水。工业废水水质特性依业别及制程而有相当大的差异,其中染整废水、食品废水及化学机械研磨废水,由于废水量大,水之回收再利用亦格外引人关注。染整废水中含有大量之有机物极高色度,利用薄膜程序如NFRO可有效去除水中色度及有机物,回收水可再导入染色制程中使用;食品废水中多为生物可降解有机物,藉由MBR结合薄膜程序,并辅以消毒单元,所处理水质可做为锅炉或清洁用水;而化学机械研磨废水中,污染物主要成分为无机物,以电化学混凝,处理水可用作冷却用水,若以混凝前处理结合RO,处理水甚至可进入纯水系统,作为纯水水源。

2. 新技术之研发

随着人类生活模式的转变,工业产品及制程发展的多样化,经由人类活动所排放至环境中的污染物质,其种类及性质亦有相当程度的改变。传统的废水处理流程,为一系列物理、化学、生物以及污泥最终处理等程序单元的组合,然其处理过程冗长繁琐,成本居高不下,在操作上常会有许多限制。近年来,建立可靠处理技术,以产生高品质及稳定水源,相关研究有逐年增加之趋势。本文提出四项新兴废水回收再利用处理技术,以做说明。

3、各再生水源应用于不同回收用途之适用处理技术

废水来源

回收再利用途

适用处理技术

都市污水

农业灌溉

活性污泥法-砂滤

好氧-缺氧-厌氧MBR

人工湿地

厕所冲洗水

生物滤床-UF-RO-消毒

畜牧废水

农业灌溉

厌氧消化

工业废水

染整废水

制程中再回收

NF/RO

食品废水

锅炉及清洁用水

前处理-过滤/吸附/RO-UV消毒

MBR-NFUV消毒

制革废水

 

NF-RO

肥料工业废水

冷却水

RO

电视映像管制程废水

制程中再回收

薄膜程序

废酸或含金属盐溶液

 

离子交换-电透析

化学机械研磨废水

制程中再回收或作为纯化水水源

混凝-UF

冷却用水

电化学混凝

(1) 高级氧化程序(Advanced Oxidation Processes, AOPs)之定义为,当溶液中有机物发生氧化反应时,可产生氢氧自由基等活性中间产物,并以此破坏目标污染物,或中间产物之程序,可有效的去除难分解有机物,达到将污染物破坏分解之目的。而这些程序时常结合强氧化剂如臭氧、过氧化氢;催化剂如过渡金属离子;或光催化剂及射线(UV、超音波或电子束),因而可形成各种组合。常被使用之AOP处理程序,在这些氧化程序中最主要的起始攻击均为氢氧自由基Durán et al.,2004)以Electro-Fenton处理都市污水及实验室废水之混合水,去除率COD可达65-75%、浊度77-92%、色度80-100%,且无细菌残留。此外,Raffaele et al.,2002)研发反应器设计,将光催化程序结合薄膜单元,用于水纯化系统,可改善处理效率。陈孝行等人(2001)利用Fenton程序可降低染整废水中有机污染物及色度之优点,结合RO薄膜程序,可使处理水质符合染整工业再利用标准,并建议将放流水与地下水混合,再以RO处理后进入制程中,可降低处理成本。

(2) 电聚浮除法(Environmental Protection Navigator, EPN),是利用电化学、流体力学及电子学等,相关技术结合而成的处理技术。电聚浮除法可强化电荷凝聚之特性,使杂质在水中产生自凝作用,同时杂质粒径又能成长形成胶羽,再予以去除。以电聚浮除法结合加氯消毒或是离子交换,处理啤酒工业之二级出流水,依处理程序之不同,回收水可做为河川补注、厕所冲洗水或是景观用水之用(李俊德等人,2000)。

(3) 电化学混凝系利用直流电的供应,由牺牲性阳极(通常为铁或铝电极)释出铁离子或铝离子,取代传统之铁盐或铝盐混凝剂,产生混凝效果,可有效去除水中不稳定之胶体颗粒(Chen et al., 2002; Larue et al., 2003),且所需之机械搅拌动力,可被电解过程中解离及分散效果所取代。此外,在电解过程中,静电磁场所产生之消毒效果,为此一程序另一项优点。李俊德等人(2003)则认为半导体化学研磨废水经电化学混凝程序处理,可作为循环冷却用水,若再经加氯、臭氧或UV消毒可回收做为景观用水或厕所冲洗水,甚至回收进入超纯水制程。此处理方法可节省大量混凝剂、运送及贮存之成本,且操作与维护简单,适用于小型社区,与传统胶凝程序比较,可减少潜在操作成本超过40-45%,并能降低卤化有机物先驱物,减少中重金属浓度及消毒用氯量,以达到加强环境保护目的。

(4) 冻结分离法,利用溶液冻结时,纯水比杂质先凝固析出之原理,将废水冷冻成较纯净的冰与最终含水率低的污泥饼,达到分离杂质之目的(Jensen and Mullin,2003)。分离后的回收水(冰)可供低温制程或空调系统之冷却能再利用,亦可视回收量与处理水质,供制程用水使用(谢文德,2003)。传统的废水处理程序所产生之大量污泥,若以传统的污泥处理方式,仅能将其自由水移出,无法移出污泥胶羽中的间隙水、表面水及结合水,因而保有85%的含水率,且体积过大,处置不易。将冻结分离技术应用在污泥处理,可破坏污泥胶羽结构,让其内部的自由水、间隙水、表面水及结合水被移出,使最后的污泥量降至最低(减量),获得较佳之结果。

上一页 页码:[<< 1 2 3 4 >>] 下一页 共4页

打印】 【网站论坛】 【字体: 】 【发表评论】 【关闭

微水会

更多关于 水回收再利用研究发展现况之回顾与评析 的资料

    第十六届城市发展与规划大会

    推荐书籍


      《高浓度有机工业废水处理技术》
      作者:任南琪
      内容简介:

      《水的再生与回用》
      作者:【美】林宜狮
      内容简介:

    合作邀请:010-88585381-805