上流式厌氧污泥复合床-膜生物反应器处理垃圾渗滤液

时间:2007-01-22 来源: 作者:

   2.2.2 整套工艺运行效果

  图3表示整套工艺进水NH4+-N、出水NH4+-NNO3--N NO2--N 以及COD的降解率随时间的变化情况。

  本阶段试验说明了厌氧段进行到不同程度对膜生物反应器脱氮效率有不同的影响。在第10 d时,由于曝气装置出现故障,出水氨氮出现暂时性升高,但很快恢复。当系统稳定运行到35 d时,进水NH4+-N达到162.7 mg/L,进水COD1813.3 mg/L,此时出水NH4+-N开始上升,最高达到37.8 mg/L,说明硝化能力受到抑制。这是由于降解COD的异养菌抑制了硝化菌的活性。从第40 d开始,将厌氧反应器的HRT延长到14 h,降低膜生物反应器的COD负荷,硝化能力逐渐恢复,第46 d时出水NH4+-N又降到10 mg/L左右。由此可看出,厌氧反应器对系统稳定运行有很好的调节作用。另外,由图3还可看出系统的COD去除率、反硝化能力比较稳定。

  2.3 COD/NH4+-N对整套工艺处理效果的影响

  C/N比对微生物的生长和有机物的降解有重要影响。原水C/N比大约在10左右,可以看出在以上试验条件下,系统有较好的降解有机物和氨氮的能力。本阶段通过向5倍稀释的原水中适当投加NH4HCO3和葡萄糖来改变C/N比,考察系统的处理能力。由图4可以看出,本套工艺可以适应较宽的C/N比范围。C/N比过大,则厌氧反应器缓冲,不至于对硝化菌过于抑制。C/N比过低,即氨氮负荷过高时,可发挥膜生物反应器特有的优势(对硝化菌的截留作用),在C/N比为2.5时,进水NH4+-N已达到727.61 mg/LCODNH4+-N

  的去除率分别在84.64%81.21%,这一NH4+-N负荷已远高于悬浮式硝化反应体系。

  2.4 厌氧段对垃圾渗滤液可生化性的贡献

  续批式膜生物反应器中也出现厌氧状态,但厌氧的强度,停留时间还远远不够。前面的UASCB段将渗滤液厌氧酸化,从厌氧降解三阶段理论来分析,水解酸化阶段反应速度快,且酸化细菌适应能力强,经过充分厌氧酸化的渗滤液,后续降解更加容易,而且可减少有毒物质的影响。研究采用膜生物反应器中垃圾渗滤液的COD的去除率与好氧进水COD的比值△COD/CODin(令其为θ)来衡量可生化程度[3]。对比了经过UASCB和未经UASCB处理的垃圾渗滤液在膜生物反应器中COD的降解难易程度(控制膜生物反应器进水浓度及其他参数大致相同),运行结果见图5

  由图5可看出,当两种情况下进液COD控制在1581.251700.27 mg/L时,经厌氧处理θ值在0.890.93,而未经厌氧处理θ值在0.760.81,即经厌氧处理后,垃圾渗滤液可生化性参数θ平均提高了0.12,提高幅度为15.2%。试验结果表明,UASCB-SMBR串联工艺,厌氧段明显地提高了垃圾渗滤液的可生化程度,使后续处理更加容易,SMBR是厌氧段的修饰和系统总处理效果的保障。

上一页 页码:[<< 1 2 3 4 >>] 下一页 共4页

打印】 【网站论坛】 【字体: 】 【发表评论】 【关闭

微水会

更多关于 上流式厌氧污泥复合床-膜生物反应器处理垃圾渗滤液 的资料

    第十六届城市发展与规划大会

    推荐书籍


      《高浓度有机工业废水处理技术》
      作者:任南琪
      内容简介:

      《水的再生与回用》
      作者:【美】林宜狮
      内容简介:

    合作邀请:010-88585381-805