从图中可以看出,反应开始8~10min左右,不同曝气量下DO值显著不同。曝气量越小,此时的DO值越低,致使整个反应过程DO处于较低水平,大大延长了反应时间。随着曝气量的增大,初始DO值也在增大,带来整个反应过程DO的提高,缩短了有机物达到难降解程度的时间,即减少了反应时间。但是,过分地增大曝气量,初始DO的过高会造成整个过程DO处于过高的水平,却不能有效地缩短反应时间,还造成能量的巨大浪费。产生这种现象可以从耗氧速率与DO的相关关系的研究中得到解释,因为在低DO浓度下,DO浓度对生化反应速率的影响较大。当DO在1~2mg/L范围内,随着DO的提高,耗氧速率大幅度提高,标志着有机物降解速率的加快,从而缩短反应时间。当DO超过2mg/L后,继续增大DO值,由于受污泥浓度(MLSS)的限制,有机物降解速率的增加幅度较小。?
取进水COD浓度分别为400、600、800、1000、1300、1600、1900mg/L,每一进水浓度又在不同曝气量下进行试验,比较DO与有机物降解情况。试验中发现控制反应过程中DO为2.0
mg/L左右时最经济合理,其相应的曝气量为合适的曝气量。通过试验找出每一进水浓度下合适的曝气量,并应随着进水COD浓度的不同,根据检测的初始DO(8~10min左右)值调节曝气量,使整个反应过程的DO处于适当的水平,既能保证出水水质,又能节省运行费用。
2.2
不同进水浓度相同曝气量
试验配制原水COD浓度分别为850、1200、1500mg/L,进水混合后COD浓度分别为650、980、1300mg/L,反应过程平均MLSS为2000mg/L,曝气量为0.6
m3/h,试验结果如图3所示。
从图可以看出,不同的进水COD浓度,反应10
min左右时DO值有很大差别,COD浓度越高,DO值越低,二者有很好的相关性。在COD浓度为650mg/L时,反应10
min左右DO值就升到4.5
mg/L;而COD浓度为1300
mg/L时,反应10
min时的DO值仅为1.3
mg/L。因此,在反应开始后较短的时间内就可以根据检测的DO值的大小预测出相应的进水COD浓度。
用SBR法处理石化废水,以上述试验研究结果为基础,设定每一周期初始的曝气量均为0.6m3/h,在不知进水COD浓度的情况下,以在线检测反应10min左右时DO值的大小为依据,预测出该进水COD浓度,再找出在该进水COD浓度下适宜的曝气量,将其归纳总结如表1所示。与此同时,发现在上述每一试验过程中,当有机物达到难降解程度时,DO都有迅速大幅度升高的现象发生,并且在较短的时间内上升到5~6mg/L。根据反应期间DO的变化,实现对SBR供气量和反应时间的模糊控制。
中国城镇供水排水协会(中国水协) 住房和城乡建设部城镇水务发展战略国际研讨会指定网站 国际水协会中国委员会工作网站
全国中长期科技发展十六项专项之一、中国十六大中长期重点专项 - 中国水体污染防治重大专项发布网站
技术支持:沃德高科(北京)科技有限公司 Copyright 2003-2011 版权所有 京ICP备12048982号-4
通信地址:北京市三里河路9号城科会办公楼201(100835) Email:water@chinacitywater.org Fax:010-88585380 Tel:010-88585381版权所有: 水世界-中国城镇水网